Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Окись углерода реакционная способность

    Хороший цинк-хромовый катализатор для синтеза метанола в то же время хороший для конверсии окиси углерода. Совершенно очевидно, что общим компонентом реакции здесь является окись углерода, реакционная способность которой управляется данным составом катализатора. [c.62]

    Четыреххлористый углерод еще менее реакционноспособен, чем хлористый метилен. Можно было бы ожидать, что хлороформ по своей реакционной способности будет занимать промежуточное положение между хлористым метиленом и четыре хлористым углеродом, однако хлороформ оказывается весьма активным в реакции с гидроксил-ионом и дает в конечном счете окись углерода, формиат- и хлорид-ионы. Отсюда можно сделать заключение, что механизм этой реакции иной. По-видимому, сильное основание, например гидроксил-ион, атакует молекулу хлороформа по атому водорода намного быстрее, чем по атому углерода. Существуют серьезные основания полагать, что полученный таким образом карбанион С1зС0 может отщепить хлорид-иоп, в результате чего образуется высоко реакционноспособное промежуточное соединение с двухвалентным углеродом СС12, получившее название дихлоркарбена. В этом соединении при углероде находятся только шесть валентных электронов (две ковалентные связи), и, несмотря на свою электронейтральность, оно обладает сильнейшими электрофильными свойствами. Быстрая атака растворителя приводит к конечным продуктам. [c.297]


    На реакцию (7) получения водяного газа оказывают сильное каталитическое действие углерод и составные части золы — окислы железа, окись кальция и др. Это влияние тем значительнее, чем выше реакционная способность топлива. Как известно, реакция (7) широко используется в промышленности и проводится на катализаторах при температуре 255—450° в тех случаях, когда требуется увеличить отношение Нг СО в газе. В присутствии древесного угля или полукокса и лигнита равновесие этой реакции устанавливается в течение 1 сек. при 700°, в присутствии металлургического кокса — при 1000°. Кривая 5 на рис. 8 соответствует теоретическим значениям кривые 1 и 4— .значениям констант, рассчитанным по экспериментальным данным для древесного угля и каменноугольного кокса. Кривые 2 м 3 соответствуют экспериментальным значениям констант для бурого и каменного углей. [c.25]

    Гомогенное окисление метана водяным паром или двуокисью углерода является в высшей степени эндотермической и относительно медленной реакцией. Скорость ее хорошо измерима при температуре около 1000° С, когда со значительной скоростью происходит также термическое разложение метана. Действительно, один из экспериментаторов [6] утверждает, что при температуре около 1000° С пар и метан непосредственно ые вступают в реакцию друг с другом, а в реакции участвуют более реакционно-способные продукты термического разложения мотана, которые и образуют окись углерода и водород. Среди легко выделяемых и идентифицируемых продуктов пиролиза метана следует отметить этилен и ацетилен [25, 26, 27 . Последние могут реагировать с водяным паром, образуя спирты, которые затем разлагаются с образованием окиси углерода, метана и водорода. Все это носит лишь предположительный характер, так как нет данных, подтверн дающих этот механизм. Реакция метана с двуокисью углерода является, по-видимому, еще более сложной, чем с водяным парол]. [c.311]

    При использовании кокса в вагранках реакция газификации является вредной, потому что она расходует кокс и охлаждает вагранку, причем образующаяся окись углерода (СО) не может быть использована. Корреляция между качеством кокса и его реакционной способностью, измеренной в обычных условиях, не была найдена. Напротив, обнаруживается хорошая корреляция между качеством кокса и сопротивлением его удару, определенным по индексу М80 (часть кусков, больших 80 мм после опыта в микум-барабане). [c.193]


    Расчеты показывают, что в 1 секции часть горючих газов (окись углерода и летучие вещества, выделяющиеся из кокса) остается неиспользованной. Полное использование химического теила дымовых газов лимитируется восстановительной реакцией образовавшейся двуокиси углерода с раскаленным коксом, протекающая интенсивно при температурах выше 900—950 °С ( в зависимости от реакционной способности нефтяного кокса). Оставшуюся часть го- [c.266]

    Последовательность процессов возникновения органических веществ разной степени сложности можно представить следующим образом. В результате действия всех видов энергии из химических элементов синтезировались первичные соединения углеводороды (в первую очередь метан), аммиак, цианистый водород, окись углерода, сероводород, простейшие альдегиды (и прежде всего формальдегид) и т.д. Эти соединения сами по себе не имели биохимического значения. Основным их свойством была высокая реакционная способность. Первичные соединения служили исходными веществами для образования биохимически важных органических соединений — мономеров. Из мономеров путем конденсации возникали полимеры — основные составные компоненты всех живых организмов. [c.190]

    При сжигании угольной пыли основная масса летучих не успевает выделиться до момента воспламенения частиц. Летучие при этом сгорают параллельно с горением кокса. Вокруг горящих частиц образуется оболочка пламепи, в которой сгорают летучие и выделяющаяся окись углерода, ири этом часть диффундирующего кислорода перехватывается и его доступ к углеродной поверхности уменьшается. В рассматриваемом случае летучие не могут играть роль активаторов процесса горения, которая им обычно приписывается. Процесс воспламенения пыли определяется пе выходом летучих, а реакционной способностью топлива, т. е. его физико-химической структурой, пористостью и т. п. [c.179]

    Свежеприготовленная окись никеля эффективно очищает воздух от окиси углерода уже при комнатной температуре, однако скорость этого процесса быстро уменьшается из-за блокировки поверхности контакта карбонатными комплексами, образующимися при взаимодействии обратимо адсорбированного СО с хемосорбированным на поверхности NiO кислородом [6, 671. На поверхности NiO, полученной частичным окислением тонкодисперсного металлического никеля при 300° С (так называемом препарате Стоуна), эти комплексы обладают очень низкой реакционной способностью по отношению к окиси углерода. Это, очевидно, связано с тем, что хемосорбированный кислород, с которым взаимодействует СО, связан с поверхностью на этом катализаторе очень прочно. [c.227]

    В настоящей главе описываются вещества, имеющие атомы азота, кислорода, серы или селена, непосредственно связанные с карбеновым углеродом. На реакционную способность таких карбенов очень существенно влияют электронные смещения от гетероатомов, богатых электронами, к электронодефицитному карбоновому углероду. Если гетероатомы соединены двойной связью с двухвалентным углеродом, то эти смещения могут привести к образованию устойчивых соединений, таких, как изонитрилы (I), производные гремучей кислоты (II) и окись углерода (III), которые не обладают электрофильностью, а ведут себя как более или менее активные нуклеофилы. [c.234]

    От пористости кокса зависит прочность и реакционная способность его, т. е. способность восстанавливать в доменных печах углекислоту СО2 в окись углерода СО. [c.32]

    Полиэтилен. При обычных температурах кислород не оказывает значительного влияния на полиэтилен, однако на солнечном свету полимер быстро разрушается. Полиэтилен обладает более высокой реакционной способностью, чем низкомолекулярные парафины, вследствие нарушений линейности цепи . При окислении в твердом состоянии при 120 С сначала снижается его молекулярный вес, а затем в результате структурирования образуются нерастворимые продукты . В растворимом окисленном полиэтилене содержатся гидроксильные, карбонильные и карбоксильные группы при структурировании в полиэтилене образуются эфирные связи. Побочными продуктами окисления при 120 °С являются окись углерода, двуокись углерода и вода. Разветвленные полимеры окисляются быстрее, чем линейные. Возможно, что более высокая упорядоченность последних и обусловливает их более высокую стойкость к окислению . [c.26]

    Такие топлива, как водород, углеводороды и окись углерода, подвергаются каталитическому окислению на аноде теми же металлами, и природа их активности необычайно сходна с рассмотренной выше. Поэтому сравнение поведения водорода с поведением углеродсодержащих топлив на электродах имеет важное значение при оценке и выяснении сравнительной реакционной способности катализаторов. Кислородный электрод также учитывается при таком сравнении, так как реакционная способность на катоде влияет на общую характеристику элемента. [c.379]


    В случае окиси пропилена, где имеет место конкурирующее влияние первичного и вторичного атомов углерода, реакционная способность первичного атома значительно выше, что приводит к сильному преобладанию одного типа раскрытия цикла, как это показано формулой XXXIII. Окись [c.26]

    Однако при добавке углеродистых веществ к углекислому барию выделяющаяся двуокись углерода почти полностью превращается в окись углерода. Такой метод снижения парциального давления двуокиси углерода в системе позволяет осуществлять полное разложение при значительно более низких температурах, чем это было возможно другими путями, поэтому он обычно и применяется при техническом обжиге. Кроме того, добавка углеродистых веществ способствует получению пористой окиси бария с высокой реакционной способностью. Необходимо применять вещества с минимальной зольностью, поскольк глинозем и силикатные соединения, содержащиеся в золе, могут образовать плотную расплавлегтую массу с окисью бария. Часто применяют ламповую сажу, нефтяной кокс или деготь. В некоторых случаях к углекислому барию до обжига вместо углеродистых веществ добавляют такие соединения, как азотнокислый барий или перекись бария, которые разлагаются при нагревании без загрязнения исходного сырья. [c.94]

    Третьей особенностью элементоорганических соединений, тесно связанной с уже отмеченными причинами и сближающей их с неорганическими соединениями, является повышенная реакционная способность функциональных групп, находящихся у другого элемента (81, Р, 8, А1, Т1 и др.), нежели у углерода. Среди таких функциональных групп часто используются С1, Вг, ОН, ОК, ОСОЕ, N112, 8Н. Поэтому среди элементоорганических соединений встречаются и весьма агрессивные вещества. [c.588]

    В последнее десятилетие проводятся исследования по применению плазмы для химических реакций возникла фактически но- вая отрасль химии — плаэмохимия. Особенно интенсивно исследования ведутся в Институте нефтехимического синтеза АН СССР. Сущность плазмохимического процесса заключается в том, что смесь, например метана и кислорода, поступает в плазменную струю, где температуры достигают нескольких тысяч градусов. В плазменной струе происходит распад (диссоциация) молекул исходного вещества на атомы, простейшие молекулы, ионы, такие, как СНз, СНа, СН, С, Са, Са, СО, О, 0 +, обладающие очень высокой реакционной способностью. Взаимодействуя между собой, они образуют самые различные соединения, папример формальдегид, окись углерода, воду.  [c.291]

    Еще более инертной является изоэлектронная окись углерода молекула N2 также с 10-электронной внешней оболочкой, которая к тому же лишена дипольного момента, способствующего в молекулах СО и N0 возникновению реакционной способности последняя выражается, например, в образовании карбонилов (например, железа и никеля) с привлечением электронных пар, в частности, и на пустые экстравалентные 4р-ва-кансии. В случае цианидных комплексов (ион СМ изоэлектронен с СО) в связях участвуют последние вакансии четвертого слоя. Их называют последними , так как Ре и N1 принадлежат к четвертому периоду, а 4р-вакансии, принадлежащие к четвертому слою, обычно не используются в соединениях элементов ряда Ре—Си и заселяются лишь в некоторых соединениях (в комплексах специального типа, например в цианидных комплексах). [c.210]

    В свете указанных работ механизм го рения углеродной частицы представляется как весьма сложный процесс, не являющийся чисто диффузионным, но связанный с химическими процессами на поверхности углерода и, стало быть, с реакционной способностью последнего. Симметричное горение частицы наблюдается только, при малых скоростях потока, не превышающих 0,3—0,4 м1сек. При скоростях потока, больших 2 м/сек (данные Л. А. Колодкиной), горение частицы становится резко несимметричным. Горение частицы происходит с наибольшей скоростью на лобовой стороне ее. Окись углерода, сдуваемая с лобовой части, горит (вторичный процесс) в вихревой зоне позади частицы, образуя газовое пламя. Наличием СО в необтекаемой зоне неподвижной частицы и следует объяснить низкие скорости горения частицы с тыльной стороны. Этим объясняется и известный факт [126] влияния влажности в дутье на скорость горения и температуру частицы. Поскольку в присутствии паров воды СО сгорает быстрее, следует ожидать, что в эт0 М случае температуры поверхности частицы будут более высокими опыт подтверждает этот вывод. [c.205]

    Взаимодействие поверхности серебряного катализатора с компонентами реакционной газовой смеси является наиболее существенной стадией каталитического процесса окисления этилена. При этом важно знать, в какой форме находится кислород на поверхности серебра, т. е. в виде каких частиц из следующих известных Оа, О2, От, О, О", О , Оз или 0.1. От этого зависят такие свойства поверхностных соединений серебра и кислорода, как состав, строение, термическая стойкость и особенно прочность связей металл — кислород, определяющая реакционную способность этих соединений. Поэтому стадия образования нестойких поверхностных кислородных соединений серебра, которые сравнительно легко разрушаются,образуя активные промежуточные продукты (например, перекись этилена), способные повести процесс превращения дальше — в те или иные конечные продукты (окись этилена, двуокись углерода, вода и т. п.), — является чрезвычайно важной при каталитическом окислении. Иными словами, форма кислорода может в.лиять на вид кинетических уравнений процесса каталитического окисления этилека. [c.270]

    Окись дивинила в присутствии алкоголятов, подобно окиси пропилена, присоединяет спирты в соответствии с правилом Марковникова с образованием первичных эфиров и эритрита, а в присутствии BFg-0(G2H5)2 присоединение спиртов к окиси дивинила протекает вопреки правилу Марковникова с образованием втор.эфиров эритрола [48]. Для объяснения порядка присоединения спиртов к окиси дивинила А. А. Петровым предложена гипотеза, согласно которой щелочные катализаторы, в частности алкоголяты, просто повышают реакционную способность спиртов их каталитическое действие не связано с деформацией связи и обусловлено только легким, но сравнению со свободными спиртами, присоединением по правилу Марковникова, а BFg действует таким образом, что образует комплексные соединения с окисями. В результате такой координации ослабляется связь между кислородом и углеродом, окись принимает форму оксониевого соединения с положительно зарян<енным трехвалентным кислородом и взаимодействует со спиртами с образованием эфиров вторичных спиртов. Такое присоединение можно выразить следующими схемами  [c.241]

    Анализ структуры окнси углерода с позиций теории молекулярных орбит облегчает понимание химических различий между молекулой окиси углерода и молекулой азота, сходство которых рассматривалось выше. В противоположность изолированной паре электронов в молекуле азота, которые находятся на негибридной х-орбите вблизи ядра азота, изолированная пара электронов атома углерода в молекуле окиси углерода находится на хр-орбите [33], направленной в противоположную от связи С — О сторону. Высокая реакционная способность окиси углерода по сравнению с азотом и способность СО являться донором электронов легко объяснимы с позиций теории молекулярных орбит. Логично ожидать, что электрофильные группы, например, кар-боний-иопы, будут взаимодействовать с молекулой окиси углерода. Поскольку образование карбоний-ионов катализируется кислотами, вполне естественно, что в кислой среде окись углерода взаимодействует с различными веществами. Некоторые реакции этого типа рассмотрены ниже. [c.9]

    Таким образом, в процессе электролиза получаются распл ленный алюминий, окись и двуокись углерода. Первичный г образующийся при электролизе и состоящий преимущественна, из двуокиси углерода, в результате реакций (14), (57) разбавляется окисью углерода. Степень разбавления отходящих газов окисью углерода зависит, главным образом, от реакционной способности анода по отношению к двуокиси углерода и кислороду. Чем ниже реакционная способность анода, тем меньше его удельный расход. Если анод недостаточно прочен, он осыпается и его расход интенсивно возрастает. Осыпаемость увеличивается, если кокс прокален неравномерно. В этом случае различные частички кокса сгорают с разной скоростью. В результате неравномерного сгорания углерода анода также увеличивается его удельный расход. Осыпавшийся кокс при определенных обстоятельствах вызывает науглероживание электролита и образование карбидов (А12С3), отрицательно влияющих на нормальный ход электролиза и вызывающих перерасход электроэнергии. Расход анодной массы Р при электролизе (в кг на 1 кг алюминия) складывается из расхода углерода (p ) по реакции (56), потерь рз по реакции (57) и механических потерь р  [c.148]

    Четыре газа — аргон, азот, кислород и окись углерода — проявляют большое различие в химической реакционной способности, но их конденсационные характеристики очень сходны. Точка кипения кислорода — 183°, аргона — 186°, окиси углерода — 190° и азота — 195°. Три из четырех молекул — аргон, кислород и азот — не имеют дипольных моментов, окись углерода обладает очень малым дипольным моментом. Так как поляризуемости, энергии ионизации и диаметры этих четырех молекул приблизительно одинаковы, то, на основании изложенного в гл. VII, мы должны были бы ожидать, что теплоты их ван-дер-ваальсовой адсорбции на одном и том ке адсорбенте также должны быть приблизительно равными. И в действительности, Дьюар [ ] экспериментально измерил теплоты адсорбции этих четырех газов на угле с помош ью калориметра с жидким воздухом (гл. III) и получил величины в 3600 кал1моль для аргона, 3700 — для азота, 3700 — для кислорода и 3400 — для окиси углерода. Таким образом, теплоты физической адсорбции этих четырех газов на угле приблизительно одинаковы и составляют около 3000—4000 кал моль. [c.309]

    Сравнительное изучение реакций Коха — Хаафа и Риттера (см. № 512) показало, что окись углерода обладает большей реакционной способностью, чем нитрилы, особенно в случае соединений, содержащих фенильные группы. [c.235]

    Гульбрансен и Эндрью [141] изучали влияние железа на реакционную способность спектроскопического графита по отношению к двуокиси углерода. Пористый графит пропитывался раствором нитрата железа, после чего нагревался до сравнительно низкой температуры для перевода нитрата железа в окись. Затем, прежде чем подвергнуть образец реакции в атмосфере двуокиси углерода под давлением 76 мм рт. ст. при 700°, его выдерживали в течение 1 час при 850° в вакууме 10 ммрт. ст. После такой обработки скорость реакции для пропитанного образца (содержащего 0,078% железа) на протя жении 10 мин в 530 раз превышала скорость реакции для исходного графита. В другом опыте образец предвЗ  [c.102]

    Таким образом, концентрация электронов или дырок па новерхпости полупроводника регулирует адсорбционную способность катализатора и реакционную способность хе-мосорбированных частиц. Число носителей тока на поверхности определяется их содержанием в объеме. Поэтому должна существовать связь между электропроводностью, определяющейся концентрацие электроно1в в объеме, II каталитической активностью. Когда в окись цинка вводится окисел лития (Ь гО), электроироводность системы уменьшается, а в присутствии окисла галлия (ОагОз) — увеличивается. На этих катализаторах окисляли окись углерода до углекислого газа, оказалось, что скорость в присутствии добавок изменяется на смеси окиси цинка с окислом лития скорость реакции была ниже, чем на образце, содержащем окисел таллия. [c.86]

    Образующийся газ (газ горячего дутья) при температуре свыше 600° поступает из генератора в камеру сжигания, где содержащаяся в газе окись углерода (содержание ее в газе зависит от реакционной способности кокса и метода газификации) сжигается вторичным воздухом. Отходящий газ отдает в котле-утилизаторе часть тепла и уходит в вы.хлопную трубу. [c.70]

    Хотя первое правило Адамсона и выполняется, второе правило в реакции (91) не реализуется. Окись углерода имеет большую силу кристаллического поля, чем амины, и ковалентное связывание более прочно для СО. Однако, помимо эффектов ослабления связей, при фотовозбуждении необходимо рассмотреть также реакционную способность основного состояния. При термическом возбуждении подвижность лигандов в М(СО)д(амин) меняется в ряду амин > СО (экваториальный) > СО (аксиальный). Прочность связи металла с ттгракс-карбонильной группой необычно высока. Это пример хорошо известного явления стабилизации нри транс-расположении в комплексе жесткого и мягкого оснований [107]. Причина заключается в том, что вдоль одной оси может образоваться только одна сильная ковалентная связь, но не две. [c.565]


Смотреть страницы где упоминается термин Окись углерода реакционная способность: [c.301]    [c.522]    [c.162]    [c.437]    [c.54]    [c.182]    [c.314]    [c.327]    [c.53]    [c.358]    [c.426]    [c.161]    [c.116]    [c.323]    [c.116]    [c.467]   
Новые воззрения в органической химии (1960) -- [ c.54 ]




ПОИСК







© 2025 chem21.info Реклама на сайте