Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Глутаминовая кислота кислота Аргинин

    Гидролиз белков ЗМ /г-толуолсульфокислотой или АМ метан-сульфокислотой [7,8], содержащей 0,2% триптамина, в вакууме при 110°С, в течение 3 суток с хорощим выходом приводит к аминокислотам, включая триптофан, однако углеводы могут мешать. Триптофан можно определять также после щелочного гидролиза, но при этом разрушаются полностью аргинин, цист(е)ин, серин и треонин. Общее содержание амидов, обусловленное наличием аспарагина и глутамина, можно определить после гидролиза 10 М НС1 при 37°С в течение 10 суток и последующего анализа на аммиак с помощью микродиффузионной техники. Раздельное определение аспарагина и глутамина можно провести с помощью предварительной этерификации (метанол-уксусный ангидрид) свободных карбоксильных групп, последующего восстановления (борогидрид лития) образовавшихся сложноэфирных групп и определения аспарагиновой и глутаминовой кислоты после кислотного гидролиза соответственно в виде v-гидрокси-а-аминомасляной кислоты и б-гидрокси-а-аминовалериановой кислоты. Содержание аспарагина и глутамина получают путем вычитания этих величин из содержания аспарагиновой и глутаминовой кислот после полного гидролиза немодифицированного белка. Полный ферментативный гидролиз белков без деструкции аминокислот можно осуществить, используя смешанные конъюгаты Сефарозы с трипсином, химотрипсином, пролидазой и аминопептидазой М [9]  [c.260]


    При использовании в качестве растворителя смеси н-бутанола, уксусной кислоты и воды (4 1 5) расположение аминокислот по направлению движения растворителя (сверху вниз) следующее цистин, лизин, аргинин, гистидин, аспарагиновая кислота, серин (три последние аминокислоты имеют вид тесно сближенных пятен) глутаминовая кислота, треонин, аланин, пролин, тирозин, валин, метионин, триптофан, фенилаланин, лейцин, изолейцин (последние три аминокислоты часто имеют вид тесно сближенных пятен). [c.113]

    В белках всех живых организмов обычно встречается только 20 различных типов аминокислот, которые указаны в табл. 21-5. Некоторые из них имеют углеводородный состав, например валин (Вал), лейцин (Лей), изолейцин (Иле) и фенилаланин (Фен). Гидрофобные группы молекул всегда более устойчивы, если их можно удалить из водного окружения. Поэтому белковые цепи в водном растворе складываются в молекулы, у которьгх такие группы обращены вовнутрь. Некоторые остатки аминокислот оказываются заряженными например, аспарагиновая (Асп) и глутаминовая (Глу) кислоты входят в белки в ионизованной форме и несут на себе отрицательный заряд, а основания лизин (Лиз) и аргинин (Apr) при pH 7 положительно заряжены. Несмотря на то что некоторые другие группы, например аспарагин (Асн), глутамин (Глу) и серии (Сер), незаряжены, они имеют полярность и поэтому совместимы с водным окружением. Одним из наиболее важных факторов, определяющих свертывание белковой цепи в глобулярную молекулу, является устойчивость, достигаемая при ориентации гидрофобных групп вовнутрь молекулы, а заряженных групп-наружу. Хотя каждый из двух оптических изомеров, показанных на рис. 21-12, пред- [c.314]

    Белки синтезируются на рибосомах из отдельных аминокислот, образуемых самими микроорганизмами. Исключение составляют некоторые ауксотрофные мутанты, для которых необходимо присутствие в среде определенных аминокислот. Биосинтез аминокислот в клетке идет ферментативно из неорганического азота и различных соединений углерода, например продуктов аэробного или анаэробного разложения углеводов. Многие аминокислоты образуются из промежуточных продуктов цикла Кребса из а-кетоглутаровой кислоты — глутаминовая кислота, орнитин, аргинин, пролин из щавелевоуксусной кислоты — Ь-ас-парагиновая кислота, гомосерин, метионин, треонин, диаминопимелиновая кислота, лизин, изолейцин из пировиноградной кислоты — аланин, валин, лейцин, серии, глицин, цистеин (рис. 17). [c.41]


    Пути биосинтеза конкретных аминокислот различаются деталями схемы и природой исходной окси- или оксокислоты. По этому последнему фактору аминокислоты подразделяются на аминокислоты, происходящие из пировиноградной кислоты — лейцин, изолейцин, валин, лизин, аланин аминокислоты, происходящие из щавелевоуксусной кислоты — аспарагиновая кислота, аспарагин, треонин, метионин аминокислоты, происходящие из 2-оксоглу-таровой кислоты —аргинин, пролин, глутаминовая кислота, глутамин аминокислоты, происходящие из продуктов [c.80]

    Сорбент — 10% апиезона М на хромосорбе ЛУ. 1 — аланин 2 — треонин 3 — глицин 4 — серин 5 — валин — лейцин 7 — изолейцин 8 — пролин 9 — метионин 10— гистидин 11 — аспарагиновая кислота 12 — фенилаланин 13 — лизин 14 — тирозин 13 — глутаминовая кислота 1в — аргинин 17 — моноацильное производное гистидина 18 — триптофан 19 — цистин [c.25]

    Метод изотопной метки основан на том, что к растущей культуре прибавляют интермедиат, например меченую глутаминовую кислоту. Она препятствует своему эндогенному синтезу и включается в биосинтез белка. Затем, выделяя и фракционируя белок клеточной популяции, обнаруживают метку и в других аминокислотах, в частности в пролине и аргинине, следовательно, глутаминовая кислота — их предшественник. [c.20]

    B. Последовательность В также не может быть трансмембранным сегментом, потому что она содержит три заряженных остатка-глутаминовую кислоту (Е), аргинин (К) и аспарагиновую кислоту (В), присутствие которых в неполярном липидном бислое будет энергетически невыгодным. [c.316]

    После окончания разделения хроматограмму высушивают на воздухе и проявляют раствором нингидрина путем опрыскивания из пульверизатора. З-атем нагревают 15—20 мин при 60° С в термостате или сушильном шкафу. Расположение аминокислот сверху вниз по направлению движения растворителя следующее цистин, лизин, аргинин, гистидин, аспарагиновая кислота, серии (три последние аминокислоты располагаются в виде тесно сближенных пятен) глутаминовая кислота, треонин, аланин, пролин, тирозин, валин, метионин, триптофан, фенилаланин, лейцин, изолейцин (последние три аминокислоты также часто располагаются в виде тесно сближенных пятен). [c.301]

    Гидролизат желатина представляет собой смесь различных аминокислот, к числу которых относятся аспарагиновая и глутаминовая кислота, аргинин, лизин, аланин, глицин и др. [c.148]

    В соке, сгущенном до 48% сухих веществ, методом хроматографического разделения на бумаге идентифицированы следующие аминокислоты цистеин, гистидин, аргинин, серин, глутаминовая кислота, пролин, 0-фенил-а-аланин, триптофан, лизин, тирозин. [c.406]

    Глутаминовая кислота не является незаменимой, однако она имеет большое значение для улучшения вкусовых качеств пищи (см. том I 3.12). Ее г олучают из растительных белков (глутеин, соевый жмых) кислотным гидролизом. Источником получения фенилаланина и аргинина также является белковое сырье (яичный альбумин, зеин). Основные аминокислоты осаждаются из гидролизата желатина в виде флавиана-тов (солей 2,4-динитро-1-нафтол-7-сульфокислоты). Лнзин осаждается из белковых гидролизатов в виде труднорастворимого монопи-крата. [c.658]

    Изоэлектрическая точка ряда других аминокислот, содержащих дополнительные кислотные или основные группы (аспарагиновая и глутаминовая кислоты, лизин, аргинин, тирозин и др.), зависит, кроме того, от кислотности или основности радикалов этих аминокислот. Для лизина, например, р1 должна вычисляться из полусуммы значений рК для а- и е-МН,-групп. Таким образом, в интервале pH от 4,0 до 9,0 почти все аминокислоты существуют преимущественно в форме цвиттерионов с протонированпой аминогруппой и диссоциированной карбоксильной группой. Следует отме- [c.38]

    Ферментативные методы гидролиза основаны на избирательности действия иротеолитических (вызывающих распад белков) ферментов, расщепляющих пептидные связи, образованные определенными аминокислотами. В частности, пепсин ускоряет гидролиз связей, образованных остатками фенилаланина, тирозина и глутаминовой кислоты, трипсин-аргинина и лизина, хпмотрипсин-триптофана, тирозина и фенилаланина. Ряд других ферментов, например папаин, субтилизин, проназа и другие бактериальные протеиназы, также используется для неполного гидролиза белков. В результате полипептидная цепь расщепляется на мелкие пептиды, содержащие иногда всего несколько аминокислот, которые отделяют друг от друга сочетанными электрофоретическими и хроматографическими методами, получая своеобразные пептидные карты. Далее определяют чередование аминокислот в каждом индивидуальном пептиде. Завершается работа воссозданием первичной структуры полной полипептидной цепи на основании определения последовательности аминокислот в отдельных пептидах. [c.56]

    В отличие от коллагена в эластине значительно больше валина и аланина и меньше глутаминовой кислоты и аргинина. В целом характерной особенностью первичной структуры эластина является слишком малое содержание полярных аминокислотных остатков. При ферментативном гидролизе эластина в гидролизате обнаруживаются десмозин и изодесмо-зин. Эти соединения содержатся только в эластине. Структура их довольно необычна 4 остатка лизина, соединяясь своими радикалами, образуют замещенное пиридиновое кольцо. Считают, что при образовангп десмозина сначала 3 остатка лизина окисляются до соответствующих е-альдегидов, а затем происходит их соединение с четвертым остатком лизина  [c.664]


    Связь амидного азота с у арбоксильной группой аспарагиновой кислоты и 6-карбоксильной группой глутаминовой кислоты доказана выделением аспарагина и глутамина после ферментативного гидролиза белка. Количество первичных аминогрупп в белке или в гидролизате может быть точно определено микрометодом Ван-Слайка (1911). Кислота, содержащая первичную аминогруппу, реагирует с азотистой кислотой с количественным выделением азота последний определяется манометрически. В лизине и а- и е-аминогруппы могут быть определены по Ван-Слайку, в аргинине реагирует только а-аминогруппа и не реагирует гуанидогруппа ЫН-группы пролина, триптофана и гистидина в этих условиях азот не выделяют глутамин дает 2 моль азота. Этот метод может быть применен для анализа гидролизата, осаждаемого фосфорновольфрамовой кислотой. Осадок содержит три основные аминокислоты и цистин, количество которого может быть вычислено, исходя из результатов анализа общего азота (по Кьельдалю) и опре- [c.640]

    Однако в большом числе экспериментов показано, что в пределах одного опыта и даже большой серии опытов, проведенных в одном строго определенном режиме работы, отношения С для разных аминокислот имеют вполне определенную величину. Если в качестве стандартной аминокислоты выбрать лейцин и его цветовой показатель при 570 ммк принять за 100, то по отношению к нему остальные аминокислоты имеют следующие значения цветового показателя оксипролин — 8 (при 440 ммк), аспарагиновая кислота — 94, треонин — 94, серин — 95, глутаминовая кислота — 99, пролин — 22,5 (нри 440 ммк), глицин — 95, аланин — 97, полуцистин — 55, валин — 57, метионин — 102, изолейцин — 100, тирозин — 100, фенилаланин — 100, триптофан — 94, гистидин — 102, лизин — 110, аммиак — около 97 и аргинин — 101. Пользуясь этими соотношениями, можно калибровать прибор, используя лишь одну аминокислоту, например лейцин, с известной степенью чистоты. Обращает на себя внимание очень низкий цветовой показатель для оксипролина. В связи с этим предлагается определять оксипролин, а также пролин с помощью нингидриновой реакции в кислой среде [20]. [c.140]

    Сорбент — 10% апиезона М на хромосорбе W. 1 — аланин 2 — треонин 3 — глицин 4 — серин 5 — валин в — лейцин 7 — изолейцин — цистеин 9 — оксипролин 10— пролин 11—метионин 12 — внутренний стандарт — орнитин 73 — гистидин 14 — аспарагиновая кислота 15 — фенилаланин 1в — лизин 11 — тирозин 1В — глутаминовая кислота 19 — аргинин 20 — внутренний стандарт — транексамовая кислота 21 — триптофан 22 — цистин 23 — внутренний стандарт — бутилстеарат [c.24]

    Для разделения ТМСпроизводных метионина, глутаминовой кислоты, фенилаланина, аргинина, тирозина, гистидина, триптофана и цистеина может быть использована укороченная стеклянная колонка (200 X 0,2 см), заполненная сорбентом с 10% 0У-7 на том же твердом носителе. [c.56]

    Исключительная роль глутаминовой кислоты ясна из нижней части схемы 1. Глутаминовая кислота не только поставляет азот для образования аланина и аспарагиновой кислоты, но является также источником для построения углеродного скелета пролина, оксипролина, глицина, серина, цистина, цистеина и аргинина. Она, действительно, является предшественником всех заменимых аминокислот [c.374]

    Растворы для исследования. Для разделения берут следующие смеси аминокислот 1) гистидин, глицин, валин, изоленцин (или лейцин) 2) аргинин, глутаминовая кислота, аланин, метионин  [c.300]

    ГЛИЦИН 2 — аланин 3 — а-амниомасляная киС" лота 4 — норвалин 5 — норлейцин б —валин 7 — лейцин S — орнитин S —лизин /О — аргинин U — серин /2 —треонин /3 — тирозин /4 — лизин /5— аспарагиновая кислота /6 — глутаминовая кислота П — аспарагин ti — глутамин. [c.651]

    Определение качественного и количественного аминокислотного состава белков и пептидов проводят после их гидролиза кислотой или щелочью. Оба вида гидролиза разрушают некоторые аминокислоты. При щелочном гидролизе частично разрушаются цистеин, серии, треонин и происходит частичная рацемизация некоторых аминокислот. При гидролизе соляной кислотой (5,7 н., 105—110° С), которая обычно используется при кислотном гидролизе пептидных связей, практически полностью разрушается триптофан. В связи с этим содержание триптофана в пробах обычно определяют после щелочного гидролиза или спектрофотометрическим методом Кроме того, наблюдаются значительные потери оксиаминокислот (серина, треонина, тирозина), се-русодержащих аминокислот (цистеина, метионина) и частично пролива. При этом степень разрушения аминокислот зависит от чистоты и концентрации НС1, используемой для гидролиза, а также длительности и температуры гидролиза. Следует отметить, что примеси альдегидов при кислотном гидролизе приводят к значительной потере тирозина, а также цистеина, гистидина, глутаминовой кислоты и лизина, а примеси углеводов в больших концентрациях — к разрушению аргинина. [c.123]

    Сухую бумагу размечают так, что линия старта находится на расстоянии одной трети (20 см) от катода. Гидролизат, растворенный в смеси ацетон — 1 н. НС1 или в 50%-ном растворе пиридина, наносят на сухую бумагу в минимальном объеме (10—20 мкл). С обеих сторон от образца-гидролизата на расстоянии 2—3 см наносят образцы отдельных ДНС-аминокислот- свидетелей , а также 2 стандартные смеси ДНС-аминокислот. Смесь А состоит из ДНС-производных аспарагиновой кислоты, пролина, треонина, валина, фенилаланина, бис-ДНС-лизина, а-ДНС-лизина, в-ДНС-лизина и ДНС-ЫНг. Смесь Б состоит из ДНС-производных цистеиновой кислоты, глицина, глутаминовой кислоты, серина, аланина, лейцина, изолейцина, гистидина, аргинина, а-ДНС-тирозина, о- и б с-ДНС-тирозина. На бумагу необходимо наносить не менее 1—5 нмоль каждой из ДНС-аминокислот. После нанесения образцов бумагу увлажняют буфером (с. 138), помещают в прибор для средневольтного электрофореза с источником пи- [c.150]

    Пятиуглеродный скелет глутаминовой кислоты непосредственно дает начало пролину, орнитину и аргинину. Соответствующие реакции показаны на рис. 14-2. Аргинин в свою очередь участвует в цикле мочевины (рис. 14-4) и является предшественником в биосинтезе полиаминов. [c.95]

    Из вышерассмотренного анализа третичной структуры белковой молекулы можно вывести следующее определение третичной структуры это структура белка, обусловленная взаимодействием цистеиновых аминокислотных остатков, либо это клубок, фиксированный дисульфидными мостиками. Хотя в общем случае не исключено, что отдельные элементы (т.е. петли) клубка могут быть образованы взаимодействием и других аминокислот водородными связями с участием ОН-групп серина и треонина, ионными связями аммонийно-карбоксилатного типа ОСО-) остатков лизина (аргинина) и аспарагиновой (глутаминовой) кислоты. Но такие петли будут нестойкими и легко разрушаться при действии рас-т орителя, изменении pH среды и т.д. [c.99]

    Получение аргинина, глутаминовой кислоты, глутамина, треонина и пролина микробиологическим способом. Для получения аминокислот — конечных продуктов неразветвленных метаболических путей, например аргинина, ауксотрофные мутанты не используют. В этом случае применяют мутанты с дефектами регуляции [c.49]


Смотреть страницы где упоминается термин Глутаминовая кислота кислота Аргинин : [c.654]    [c.658]    [c.315]    [c.29]    [c.146]    [c.526]    [c.74]    [c.293]    [c.156]    [c.301]    [c.495]    [c.156]    [c.64]    [c.15]    [c.897]    [c.261]    [c.112]    [c.143]    [c.325]    [c.135]    [c.151]    [c.402]   
Биохимия аминокислот (1961) -- [ c.0 ]




ПОИСК





Смотрите так же термины и статьи:

Аргинин

Глутаминовая кислота



© 2025 chem21.info Реклама на сайте