Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Поляризационные кривые, влияние скорость коррозии металлов

    По поляризационным кривым можно вычислить скорость коррозии металла. При стационарном потенциале скорости катодной и анодной реакций одинаковы. Поэтому, если известна зависимость скорости катодной и анодной реакций от потенциала, то путем графического построения можно определить скорость коррозии металла в данных условиях. Для того чтобы установить зависимость между потенциалом и скоростью электродных реакций, плотность внешнего тока должна быть значительно выше плотности коррозионного тока. Это условие необходимо соблюдать из-за влияния на величину потенциала сопутствующего электродного процесса. Фактически, при снятии катодной поляризационной кривой скорость катодного процесса повышается пропорционально плотности внешнего тока, но [c.46]


    Коррозионные диаграммы, построенные на основе представлений теории локальных элементов, удобны для качественного рассмотрения процесса коррозии и для оценки возможного влияния на него различных факторов. В то же время их использование при количественных расчетах скорости коррозии связано со значительными трудностями. Скорость коррозии определяется изменением веса образца за единицу времени, отнесенного к единице его поверхности, или (в электрических единицах) плотностью тока i. Коррозионные же диаграммы, приведенные на рис. 96 и 97, построены в координатах потенциал — сила тока (т. е. не включают в себя величины плотности тока, непосредственно характеризующей скорость коррозии). Для ее расчетов нужны поэтому дополнительные данные. Необходимо знать качественный состав корродирующего металла, чтобы выяснить, какие компоненты металла в данных условиях будут играть роль катодов и какие — анодов. Необходимо определить долю поверхности, приходящуюся на каждый катодный и анодный участок, чтобы иметь возможность определять плотность тока на любом из них. Далее требуется для всех анодных составляющих снять анодные поляризационные кривые, а для всех катодных — катодные. Это позволит найти общую скорость катодной и анодной реакций и установить наиболее эффективные анодные и катодные составляющие. Зная стационарные потенциалы, можно, суммируя все катодные и все анодные кривые, построить результативную коррозионную диаграмму, по которой можно определить максимально возможную силу тока. Предполагая, что омические потери ничтожно малы, и зная, как распределяется поверхность между анодными и катодными зонами, можно вычислить скорость коррозии. Этот сложный способ, дающий не всегда однозначные результаты (в связи с возможностью совмещения катодных и анодных реакций на одном и том же участке), редко применяется для количественной оценки скорости коррозии. [c.471]

    При исследовании коррозионных процессов широко пользуются методом коррозионных диаграмм (анодных и катодных поляризационных кривых), позволяющим определять стационарный потенциал, ток коррозии и оценивать влияние различных факторов на скорость коррозии (рис. 181). Металл и электро- [c.518]

    На схематическом рис. 133 рассмотрено влияние величины тока обмена окислителя на установление стационарного потенциала и тока коррозии металла. Окислитель, характеризующийся низким током обмена I (кривая Л ), может создать нестабильную пассивность с двумя возможными стационарными потенциалами (Е и Е ), как описывалось выше. Окислитель с более высоким током обмена 2 образует устойчивое пассивное состояние. При этом устанавливающийся стационарный потенциал коррозии металла Е2 имеет заметно более отрицательное значение, чем равновесный окислительно-восстановительный потенциал окислителя вследствие более высокой скорости коррозии металла в пассивном состоянии по сравнению с током обмена окислителя. В случае, если ток обмена точно равен или близок к току коррозии (кривая Kg), потенциал коррозии Е ж же остается несколько отрицательнее, чем окислительно-восстановительный потенциал Е у . Это происходит потому, что вблизи значения тока обмена катодная поляризационная кривая отклоняется от простой логарифмической зависимости [32] (см. рис. 133) . Только в случае, если ток обмена значительно больше (например, на порядок или выше) тока коррозии в пассивном состоянии (катодная кривая А 4), устанавливающийся потенциал коррозии Е будет почти точно соответствовать окислительно-восстановительному потенциалу Е у . [c.194]


    Появление коррозии с кислородно-водородной деполяризацией зависит не только от соотношения равновесных потенциалов металла, кислородного и водородного электродов, но и от условий, определяющих наклон поляризационных кривых и величину диффузионного тока. Влияние взаимного расположения поляризационных кривых на скорость коррозионного процесса можно проследить по поляризационной диаграмме рис. 33. [c.63]

    Метод определения полноты катодной защиты по поляризационному потенциалу на границе раздела фаз металл—грунт. При равенстве плотностей анодного и катодного токов без наложения внешнего тока на границе раздела фаз металл — грунт устанавливается электронейтральность. В этом случае равновесный потенциал металла при известной концентрации его ионов легко определяется из уравнения Нернста. Это положение и взято за основу экспериментального определения полноты катодной защиты тю размеру защитного потенциала, так как равновесный потенциал металла в собственной соли становится все менее благородным с уменьщением концентрации ионов железа. Грунтовые электролиты обычно вообще не содержат корродирующего металла или содержат в малом количестве, поэтому равновесный потенциал в них менее благороден, чем коррозионный потенциал. Плотность тока катодной поляризационной кривой осаждения железа очень мала и не оказывает влияния на коррозионный потенциал, а следовательно, на скорость коррозии. Частные реакции (катодная и анодная) при равновесном потенциале протекают с одинаковой скоростью, поэтому в раствор материальные частицы не переходят. Это значение потенциала очень важно установить при катодной защите, однако практически это сделать чрезвычайно сложно. Так как, во-первых, равновесный потенциал растворения железа в конкретных условиях никак не связан с коррозионным потенциалом, а защитный потенциал связан с этим потенциалом, поэтому критерий полноты катодной защиты по потенциалу на границе фаз металл—грунт почти лишен смысла. Из асимптотического вида анодной кривой видно, что достигаемое путем снижения потенциала уменьщение растворения железа становится все меньще, однако небольшие отклонения от точного значения потенциала становятся едва заметными. [c.119]

    Используя схематические поляризационные диаграммы для объяснения влияния напряжений на скорость общей коррозии и влияния катодной поляризации на скорость коррозионного растрескивания, Макдональд и Вебер не дифференцируют анодные участки на поверхности статически напряженного металла, на дне первоначальных концентраторов напряжений и на дне коррозионных трещин, отображают анодную поляризуемость корродирующего под напряжением металла одной поляризационной кривой. Такое представление о процессе коррозионного растрескивания является существенным упрощением и не соответствует реальной картине. [c.23]

    Таким образом, данные о влиянии температуры на поляризуемость технического алюминия позволяют установить, что зависимость скорости коррозии этого металла от температуры связана с влиянием последней на катодный процесс, максимальное облегчение которого имеет место при 50° С. Данные этого же исследования [213] показали, что в некоторых случаях поляризационные кривые не помогают уточнить механизм влияния того или иного фактора на скорость коррозии металлов. Так, для технического алюминия в 1-н. по С1 раствору ЫаС1 с pH =13 скорость коррозии непрерывно и эффективно растет с повышением температуры. Однако поляризационные кривые не позволяют ни в какой степени объяснить такое влияние температуры на скорость коррозии. Неопределенная форма поляризационных кривых в данном случае объясняется чрезвычайно 170 [c.170]

    Весьма интересные результаты были получены при изучении влияния ингибиторов на коррозию при пластической деформации металлов. Оказалось [68 69 , что в присутствии ингибиторов не только уменьшается скорость коррозии, но и ослабляется влияние деформации. На рис. 16 представлены поляризационные кривые, полученные для стали 20. Коррозионной средой служила 1,1 н. НС1 (4%-ный раствор НС1), близкие результаты были получены в 1,1 н. H2SO4. Из рисунка следует, что деформация влияет сильнее всего на поляризационные характеристики образцов стали в состоянии поставки анодные кривые смещаются в отрицательном, а катодные — в положительном направлении. Несколько меньше, но вполне отчетливо (особенно для анодного процесса) это влияние проявляется на кривых для отложенных образцов. Введение ингибиторов исключает эффект деформации, уменьшает скорость коррозии, стационарный потенциал при этом смещается в положительную сторону. [c.48]


    По действию ка сопряженные катодные и анодные реакции, протекающие при коррозии металлов, ингибиторы разделяют на катодные, анодные и смешанные На рис. 22 представлены схематические поляризационные кривые, поясняющие действия ингибиторов различных типов. Катодные ингибиторы уменьшают скорость катодного процесса, что приводит к смещению потенциала коррозии в область более отрицательных потенциалов и замедлению скорости коррозии при нахохедении металла в активном состоянии или состоянии перепассивации. Если металл находится в пассивном состоянии, то изменение скорости катодного процесса не оказывает влияния на скорость коррозии. Если находится на границе активной и пассивной области, то увеличение перенапряжения катодного процесса выведет металл в активное состояние, что вызовет увеличение скорости коррозии. [c.48]

    Определенную помощь для уменьшения расходов и времени на коррозионный прогноз может оказать программа для проведения прогноза коррозионной стойкости нержавеющих сталей в водных сульфатсодержащих средах [102]. Программа учитывает влияние шести независимых факторов коррозии температуру, pH среды, скорость движения водного раствора, концентрацию растворенного кислорода и ионов Ре + и С1 . Для определения коррозионного состояния системы используются термодинамические и экспериментальные параметры данной системы, а также эмпирические зависимости. Программа включает прогнозирование потенциала металла системы, силы тока коррозии, хода поляризационных кривых, области иммунности (активную и пассивную), она позволяет находить наиболее неблагоприятные сочетания условий, обеспечивающие развитие коррозии. Авторы наметили пути усовершенствования программы прогнозирования коррозии, что должно повысить точность и достоверность прогноза для величин, характеризующих корродирующую систему. [c.178]

    Для воздействия на поляризационные свойства используют различные добавки в раствор — ингибиторы коррозии, которые адсорбируются на поверхности металла и уменьшают скорость катодной и (или) анодной реакции. Ингибиторы применяют, главным образом, для кислых растворов электролитов, иногда и для нейтральных. Ингибиторами служат разные органические соединен я, содержащие функциональные группы -ОН, —5Н. —МНа, —СООН и др. Пример влияния органического ингибитора тетрадецнлгидропиридинбромида на поляризационные кривые выделег ия водорода и растворения металла показан на рис. 18.8. Этот ингибитор заметно снижает скорости как анодного, так и катодного процессов. Поскольку воздействие на анодный процесс выражено несколько сильнее, бестоковый потенциал металла сдвигается в оложительную сторону. Ток саморастворения в присутствии ингибитора снижается пример- 0 на один порядок. [c.346]

    Рассмотрим еще один пример применения метода поляризационных кривых для уточнения данных о влиянии температуры на скорость коррозии алюминиевого сплава в 1-н. по С1 растворах N301 с различным значением pH [269]. В растворе с pH = 6 скорость коррозии технического алюминия имеет при 50° С максимум (рис. 102). Для того чтобы объяснить такой ход кривой скорость коррозии — температура, в данном растворе измеряли потенциал металла во времени и снимали поляризационные кривые при разных температурах. Измерения показали (рис. 103), что при О и 20° С потенциал испытывает незначительные измерения, которые происходят главным образом в первые минуты после погружения образцов в раствор, а при 50 и 80° С наблюдается заметное разблагораживание его. Начальные значения 168 [c.168]

    Таким образом,при катодной поляризации титана, аходя-щегося в пассивном состоянии в кислых средах, можно наблюдать отрицательный защитный эффект. Этот эффект на титане может проявиться помимо катодной поляризации также и при контактировании его с электроотрицательными металлами. Проявлением отрицательного защитного эффекта объясняется активирование титана в разбавленных растворах серной и соляной кислот в паре с алюминием, а также в контакте с активным титаном, находящимся в щели при ограниченном доступе кислорода. Установившаяся скорость коррозии титана в паре с активным электроотрицательным металлом будет зависеть от стационарного электродного потенциала контактируемого металла, его поляризационных характеристик и соотнощения площадей контактируемого металла и титана. Наиболее опасным будет случай, когда общий потенциал такой пары будет лежать около потенциала максимума коррозии титана на кривой скорость коррозии — потенциала (ф г. 51), что, очевидно, будет соответствовать наибольшей скорости разрушения титана под влиянием анодного контакта. [c.92]

    Оказалось, что об адсорбции и влиянии различных веществ на работу железного катода можно сделать определенные выводы и на основании простых опытов, заключающихся в наблюдении скорости и степени деформации электродов из отон<женной тонкой железной проволоки, согнутой в виде спирали [11]. В чистом растворе разбавленной H2SO4 удлинения железных спиралей не наблюдается, так как степень насыщения водородом в этих условиях, Н0-1ШДИМ0МУ, слишком мала. В присутствии промоторов проникновения водорода возникают дилатационные эффекты. Присутствие органических веществ, адсорбирующихся на новерхности катода, уменьшает степень насыщения водородом и предохраняет спирали от удлинения. Таким образом, например, действует дибензилсуль-фоксид, являющийся одним из самых сильных ингибиторов кислотной коррозии металлов. На основании хода поляризационных кривых в [c.74]

    Разберем теперь случай отсутствия влияния примесей в окислргтельиой среде. Чистый металл корродирует за счет небольшой начальной разницы иотенциалов, но поляризационная катодная х ривая растянута и пересекает анодную кривую гораздо дальше (рис. 27). Причиной этого может быть устаповление окислительно-восстановительного потенциала среды на катодных участках достаточно большой площади. В значительно большей степени электроположительная примесь занимает малую площадь, и поляризационная характеристика ее в данной окислительной среде может оказаться не столь благоприятной. Поэтому катодная кривая Е , пойдет довольно круто вверх, и пересечение произойдет левее точки, отвечающей 1 . Тогда иаличие катода хотя и очень э,лектроположи-тельного, ничего не прибавит к суммарному току 1 , определяющему скорость коррозии. В менее детальном виде этот случай изображен на рис. 27. [c.123]


Смотреть страницы где упоминается термин Поляризационные кривые, влияние скорость коррозии металлов: [c.168]    [c.99]    [c.530]    [c.519]   
Теоретическая электрохимия (1959) -- [ c.567 ]

Теоретическая электрохимия Издание 3 (1970) -- [ c.566 ]




ПОИСК





Смотрите так же термины и статьи:

Коррозия влияние

Коррозия металлов

Коррозия металлов коррозии

Коррозия металлов скорость

Поляризационная кривая

Скорость коррозии



© 2025 chem21.info Реклама на сайте