Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Потенциалы коррозии металлов и сплавов

    Защитные покрытия. Слои, искусственно создаваемые на поверхности металлических изделий и сооружений для предохранения их от коррозии, называются защитными покрытиями. Если наряду с защитой от коррозии покрытие служит также для декоративных целей, его называют защитно-декоративным. Выбор вида покрытия зависит от условий, в которых используется металл. Материалами для металлических защитных покрытий могут быть как чистые металлы (цинк, кадмий, алюминий, никель, медь, хром, серебро и др.), так и их сплавы (бронза, латунь и др.). По характеру поведения металлических покрытий при коррозии их можно разделить на катодные и анодные. К катодным покрытиям относятся покрытия, потенциалы которых в данной среде имеют более положительное значение, чем потенциал основного металла. В качестве примеров катодных покрытий на стали можно привести Си, N1, Ag. При повреждении покрытия (или наличии пор) возникает коррозионный элемент, в котором основной материал в поре служит анодом и растворяется, а материал покрытия — катодом, на котором выделяется водород или поглощается кислород (рис. 74). Следовательно, катодные покрытия могут защищать металл от коррозии лишь при отсутствии пор и повреждений покрытия. Анодные покрытия имеют более отрицательный [c.218]


    Защита металлов электрохимическим путем. Этот метод иначе называется протекторной защитой или электрозащитой. Для этого используют специальный анод — протектор, который готовится из металла или сплава, имеющего более отрицательный электродный потенциал, чем потенциал защищаемого металла. Протектор присоединяется к защищаемому металлу и, контактируя, они оказывают взаимное поляризующее действие. Протектор будет разрущаться от коррозии, предохраняя соответствующий защищаемый металл. В качестве протекторов чаще всего используют цинк, старые железные детали, магниевые сплавы и т. д. Обычно протекторная защита достигает своей цели в тех средах, которые хорошо проводят электрический ток. [c.239]

    Если имеется контакт какого-либо металла со сплавом и возникла коррозия, то сплав приобретает потенциал, соответствующий потенциалу наиболее отрицательного металла, входящего в его состав. При контакте латуни с железом корродировать станет латунь (за счет наличия в ней цинка). Очень часто электрохимическая коррозия возникает в результате различной аэрации, т. е. неодинакового доступа кислорода воздуха к отдельным участкам поверхности металла. На рис. 27 изображен случай коррозии железа под каплей воды. Около краев капли, куда кислороду проникнуть легче, возникают катодные [c.132]

    Увеличивает анодную пассивируемость сплавов добавление высокозарядных металлических или металлоидных ионов, которые повышают плотность тока катионных зарядов до необходимого для пассивации уровня. В качестве таких ионов можно использовать металлы Сг, У, V, Мп или металлоиды Si, С, В, Р, 8 и N. Повышают пассивируемость сталей также легированием небольшими добавками электрохимически положительных металлов (Ш, Рс1, Ки, Ке), облагораживающих потенциал коррозии металла положительнее потенциала полной пассивации и обеспечивающих достаточную для пассивации плотность катионного тока. Исследованиями последних лет было показано, что для достижения эффекта повышения коррозионной стойкости металлов достаточно обрабатывать только поверхностные слои металла. [c.73]

    Железохромовые сплавы обнаруживают возрастающую тенденцию к пассивации с увеличением содержания хрома. Критическая плотность тока, требуемая для достижения пассивного состояния в деаэрированных нейтральных растворах, падает с повышением содержания хрома до 12%, а затем, при дальнейшем повышении содержания этого металла, остается постоянной и составляет 2 мкА/ /см [73]. Это очень низкая величина. Если катодная реакция происходит на сплаве Ре — 12% Сг с более значительной скоростью и если потенциал сплава относительно благороден, то этот сплав пассивируется, поскольку критическая плотность тока будет превзойдена и стационарный потенциал коррозии установится в области пассивного состояния. Это также справедливо для нержавеющих сталей в аэрированных растворах, и по той самой причине г ат > > крит- Таким образом, обычные нержавеющие стали являются [c.117]


    Причиной возникновения микроэлементов на поверхности металла (или сплава) может быть не только наличие в металле примесей других металлов с большей величиной электродного потенциала, но и содержание в нем других различных составляющих, имеющих неодинаковые с металлом потенциалы, а также различие электродных потенциалов на участках поверхности металла, покрытых оксидной пленкой (катодные участки), и участках без пленки (анодные участки). Важнейшими причинами возникновения макроэлементов на поверхности металла (той или иной металлической детали) могут быть следующие соприкосновение металлов, разных по активности (контактная коррозия) различие состава электролита на отдельных участках поверхности металла разница в концентрации одного и того л<е электролита на отдельных участках поверхности разный доступ кислорода к отдельным участкам поверхности металла (так называемая коррозия при неравномерной аэрации). Тот участок поверхности металла, к которому кислород поступает с большей скоростью, является катодом ло отношений к тому участку, где доступ кислорода меньше. Следовательно, коррозия металла возможна и при отсутствии примесей в нем. [c.191]

Таблица 6. Ряд металлов и сплавов в порядке повышения их потенциала коррозии ор в морской воде Таблица 6. Ряд металлов и сплавов в порядке повышения их <a href="/info/317382">потенциала коррозии</a> ор в морской воде
    Для простоты приводится одна анодная поляризационная кривая для щели и открытого участка поверхности сплава. Как видно из рис. 17, сплав в щели находится в активном состоянии, а на открытой поверхности — в пассивном состоянии (коррозионный потенциал им ет более положительное значение). В этих условиях между участком сплава в щели и открытой поверхностью возникают локальные токи, что приводит к сближению их потенциалов ( к, и к,). Однако в этих условиях система часто остается не полностью заполяризованной. В процессе коррозии металла в щели изменяется состав раствора (pH, концентрация ионов металла и других компонентов раствора) из-за возникающих диффузионных ограничений, что приводит к изменению хода анодной парциальной кривой для этой части поверхности. При этом может изменяться положение равновесного потенциала, Еа и значения других величин, и парциальные анодные кривые для сплава в щели и на открытой поверхности становятся разными. [c.42]

    Местная коррозия обычно является следствием образования гетерогенных смешанных электродов, причем изменение кривых местная плотность тока — потенциал мол<ет иметь причины, связанные с особенностями и материала и окружающей среды. При наличии различных металлов (см. рис. 2.7) получается контактный элемент. Местные различия в составе среды ведут к образованию концентрационных элементов. Сюда относится и аэрационный элемент, свойства которого в конечном счете характеризуются различиями величиной pH стабилизирующимися в результате последовательных химических реакций, здесь могут иметь значение ионы хлора и ионы щелочных металлов [21. Такие коррозионные элементы могут иметь весьма различную протяженность. Так, при селективной коррозии многофазных сплавов аноды и катоды могут иметь размер в доли миллиметра. У объектов большой площади, например трубопроводов, размеры таких коррозионных макроэлементов (макропар) могут достигать нескольких километров. Опасность коррозии при образовании элемента решающим образом зависит от отношения площадей катода и анода. Из зависимостей на рис. 2.6, если ввести интегральные сопротивления поляризации [c.58]

    Аналогично высоколегированным сталям, алюминий и его сплавы в нейтральных водах тоже подвергаются язвенной коррозии [8, 26, 27, 40—42], Потенциалы язвенной коррозии у алюминия и его сплавов гораздо более отрицательны, чем у сталей, тогда как электропроводность пассивного слоя чрезвычайно мала. Вследствие этого катодная промежуточная реакция сильно затормаживается, так что несмотря на неблагоприятные значения потенциала язвенной коррозии алюминиевые сплавы оказываются сравнительно коррозионностойкими. Потенциалы язвенной коррозии имеют практическое значение для оценки коррозионной опасности при образовании коррозионного элемента с посторонними металлами или для катодной защиты. Для водопроводной воды (4 ммоль-л С ) при 25 °С они составляют примерно /н —В, а [c.70]

    Анодную защиту применяют только для оборудования из сплавов, которые склонны к пассивации в данном технологическом растворе. Коррозия этих сплавов в пассивном состоянии протекает гораздо медленнее. Анодную поляризацию защищаемого металла осуществляют с помощью источника постоянного тока, потенциостата, который автоматически регулирует потенциал защищаемого металла.  [c.40]


    Электрохимическая коррозия металлов и сплавов возникает на границе раздела фаз металл—электролит. Этот вид коррозии не зависит от типа электролита, будь то химически чистая вода, раствор соли или кислота. Существенной роли не играет и количество электролита — коррозию может вызвать слой влаги толщиной несколько десятков нанометров. Единственное необходимое условие для протекания коррозионного процесса — это возможность совместного возникновения и развития анодной реакции ионизации металлов и катодной реакции восстановления тех или иных ионов и молекул на поверхности металла. Такое условие реализуется в случае, когда равновесный анодный потенциал более отрицателен, чем потенциал хотя бы одной из возможных катодных реакций. [c.52]

    Нри анодной защите потенциал активно растворяющегося металла смещают в положительную сторону до достижения устойчивого пассивного состояния (рис. 10.1). В результате происходит не только существенное (в тысячи раз) снижение скорости коррозии металла, но и предотвращается попадание продуктов его растворения в производимый продукт. Смещение потенциала в положительную сторону можно осуществлять от внешнего источника тока, введением окислителей в раствор или введением в сплав элементов, способствующих повышению эффективности протекающего на поверхности металла катодного процесса. [c.293]

    Значительные проблемы в этой области связаны с коррозией под напряжением, при трении, с коррозионной усталостью и растрескиванием. Однако коррозия наружных и особенно скрытых поверхностей фюзеляжа самолета весьма актуальна. В замкнутых объемах и профилях фюзеляжа, как и в полостях кузовов автомобилей, влага задерживается длительное время. Это объясняется следующими причинами высокой относительной влажностью (до 90% и выше) в непроветриваемых, труднодоступных частях центроплана высокой температурой в этих объемах (летом на 10—15°С выше температуры окружающего воздуха) попаданием конденсата и агрессивных жидкостей конденсацией воды в топливных баках и т. д. Наиболее распространенными являются контактная, щелевая и нитевидная коррозии, расслаивающая коррозия, питтинг- и фреттинг-коррозии. Продукты коррозии легких сплавов имеют больший объем, чем сам металл и могут наносить значительный ущерб прочности конструкций. Коррозия алюминиевых сплавов в щелях в 10—12 раз выше коррозии на поверхности потенциал в щели на 200—300 мВ сдвинут в отрицательную область [128]. [c.202]

    Заключение о том, какой из двух разнородных металлов, находящихся в контакте, будет анодом, можно сделать непосредственно по потенциалам коррозии этих металлов в данной коррозионной среде. В табл. 6 приведен ряд конструкционных металлов и сплавов, расположенных последовательно по возрастанию их потенциала коррозии в морской воде, причем каждый вышестоящий металл будет анодом по отношению к любому нижестоящему. Однако скорость контактной коррозии анода поры будет определяться поляризационными характеристиками контактирующих металлов, соотношением их площадей и омическим сопротивлением системы. [c.77]

    Механизм щелевой коррозии для пассивных металлов и сплавов можно представить следующим образом. Во времени, вследствие затруднения доступа окислителя и расходования его в коррозионном процессе, снижается его концентрация в щели, и эффективность катодного процесса уменьшается. Если при уменьшении концентрации окислителя катодный ток обеспечивает поддержание пассивного состояния и потенциал коррозии сплава остается в пассивной области, то коррозионный ток практически не меняется. При дальнейшем уменьшении концентрации величина катодного тока становится настолько малой, что потенциал металла смещается в отрицательную сторону, металл в щели переходит в активное состояние и скорость его растворения увеличивается. Появление в растворе продуктов коррозии и их гидролиз приводят к подкислению раствора. Протекание коррозионного процесса при ограниченной скорости подвода свежего электролита вызывает дальнейшее понижение pH, что облегчает анодный процесс растворения металла и создает возможность протекания катодного процеса с водородной деполяризацией. Это увеличивает коррозионный ток. Процесс под-кисления коррозии в щели особенно ускоряется, если металл в щели при смещении потенциала в отрицательную сторону становится анодом по отношению к металлу открытой поверхности, что обычно наблюдается в практических случаях щелевой коррозии. [c.84]

    Из потенциостатических поляризационных кривых, снятых в 40%-ной серной кислоте при 100° С [9], следует, что неле-гированный )ванадий в условиях проведения опыта не пассивируется анодный ток непрерывно возрастает по мере смещения потенциала в положительную сторону (рис. 18, кривая 1). . На анодной кривой 2 нелегированного тантала (рис. 18), напротив, отсутствует область, где он активно растворяется. При легировании ванадия танталом потенциал коррозии сплавов смещается в положительную сторону. Анодные кривые сплавов располагаются между кривыми нелегированных металлов. При ЭТОМ в зависимости от содержания тантала в. сплаве меняется характер кривых. Так, кривые, снятые на сплавах, содержащих до 40% тантала, имеют форму, соответствующую нелегированному ванадию, т. е. на них отсутствует пассивная область. Для сплавов с 50% тантала и выше на анодных кривых отчетливо проявляется область независимости плотности тока от потенциала. Из представленных данных (рис. 18а и 186) следует, что вне зависимости от состояния [c.92]

    Эффективное средство борьбы с контактной коррозией— изоляция металлов друг от друга неметаллическими материалами. Необходимо убедиться в том, что контакт с неметаллическим материалом не вызывает коррозию применяемых металлов. Особым будет случай контактной коррозии металлов, способных в зависимости от значения потенциала в данной среде находиться в пассивном или в активном состоянии. Так, аустенитная сталь в кислых средах при pH О находится в пассивном состоянии. В местах контакта с алюминием или его сплавами потенциал стали сместится в отрицательную сторону и может достигнуть значений, при которых сталь в данной среде будет находиться в активном состой-нии. Естественно, при этом произойдет разрушение стали. [c.606]

    Исследовано электрохимическое поведение сплавов титана с алюминием в растворах карбонатов щелочных металлов. Обнаружено, что введение в указанные растворы галогенид-ионов вызывает резкое понижение коррозионной стойкости титан-алюминиевых сплавов вследствие питтин-гообразования. Введение в растворы карбонатов анионов кислородсодержащих кислот не оказывает заметного влияния ни на потенциал коррозии, ни на критическую плотность тока. [c.27]

    Изменение свойств коррозионной среды. Вещества, способные при незначительных добавках их к коррозионной среде эффективно уменьшать коррозию металла или сплава, называются замедлителями ингибиторами) коррозии. Чаще всего применяют такие замедлители коррозии, добавки которых к раствору электролита вызывают заметное изменение потенциала металла в этом растворе, приближая его к потенциалу малоактивных металлов. [c.302]

    Для каждого материала на основании формы кривой поляризации можно получить большое число данных, характеризующих его свойства в рассматриваемой среде. Таким путем можно, в частности, во всех подробностях изучить те процессы коррозии, которые протекают необычайно медленно. С другой стороны, если известна кривая поляризации, можно к металлическому электроду приложить любое напряжение, соответствующее одной из точек этой кривой, и поддерживать указанное напряжение на строго постоянном уровне в течение периода любой продолжительности. Эта методика представляет собой значительную ценность для избирательной обработки какого-либо одного элемента структуры (например, одной какой-либо фазы сплава или любой другой неоднородности), потенциал растворения которого отличается от потенциала растворения основного металла сплава или любых других его компонентов. Результаты такой коррозии при контролируемом потенциале изучаются затем по.д микроскопом, в то время как путем химического анали- [c.260]

    Явление перепассивации металлов и сплавов возможно при производстве и переработке особо сильных окислителей. С коррозией металлов в услоаиях перепассивации можно бороться, применяя катодную защиту металла или вводя в коррозионную среду добавки восстановителей для сдвига потенциала металла или окислительного потенциала раствора до их значений, соответствующих пассивному состоянию металла. [c.314]

    При 368-суточных испытаниях различных промышленных сплавов алюминия в морской воде возле Ки-Уэст во Флориде их коррозионное поведение (наличие или отсутствие питтинга) зависело от присущего им коррозионного потенциала [7]. На сплавах с потенциалами от —0,4 до —0,6 В (большинство из них содержало легирующую добавку меди) образовались питтинги со средней глубиной 0,15—0,99 мм. На сплавах с более отрицательными значениями потенциала (от —0,7 до —1,0 В) питтинг практически не образовывался. Причина такого поведения сплавов становится понятной, если сопоставить указанные области коррозионных потенциалов со значением критического потенциала питтингообразования в 3 % растворе Na l, которое составляет —0,45 В (см. разд. 5.5.2). Контакт образцов сплавов, склонных к питтингу, с пластинами активного алюминиевого сплава (см. разд. 12.1.2), который обеспечивал поляризацию металлов примерно до —0,85 В в основном успешно предотвращал образование питтинга в течение всего периода испытаний. Результаты этих испытаний в реальных условиях подтверждают предположение, что в отсутствие щелей алюминий и его сплавы при потенциалах ниже критического значения не подвергаются питтинговой коррозии. [c.343]

    Если металл (сплав) находится в активном состоянии, СОСТОЯНИЙ пробоя или перепассивации, то снизить скорость коррозии можно смещением его потенциала в область более отрицательных (меньших) потенциалов. С этой цепью применяется метод катодной защиты [41, 42] или протекторная защита. Методы катодной и протекторной защиты, в частности, эффективно применяются при защиге морских соорулсений. [c.47]

    При нахождении металла (сплава) в активном состоянии для снижения скорости коррозии применяется также метод анодной заш,иты [45, 46]. П ,,1и анодной защите с помощью потенциостати-ческого устройства металл переводят в пассивное состояние, задавая ему определенный потенциал, для которого характерны низкие токи коррозии. Метод обеспечивает хорошую защиту отдаленных от катода, иногда достаточно сложных по конфигурации конструкций. Анодная защита часто применяется для защиты емкостей, трубопроводов, содержащих коррозионно-активную среду. При анодной защите необходимо, чтобы ток растворения в пассивном состоянии имел низкие значения. При анодной [c.47]

    В технических материалах (стапи, сплавы), вследствие явно выраженной электрохимической гетерогенности поверхности, в некоторых случаях возможно местное разделение анодного и катодного процессов, что существенно ускоряет коррозию металлов. Такое ускорение обусловлено тем, что на одних участках энергетически более выгодны процессы окисления металла, на других - процессы восстановления. Однако во всех случаях поверхность металла в электролите эквшотенииальна, так как электропроводность электролита высока и все участки металла заполяризованы практически до одного общего, ,компромиссного потенциала. Электрохимическая гетерогенность поверхности фиксируется только путем микроэлектрохи- [c.31]

    Опыты А.В.Карлашова и др. [185, с. 76—79] по исследованию изменения частоты нагружения на коррозионную усталость сплава Д16Т в 3 %-ном растворе Na I показали, что при частоте нагружения 50 Гц образец имеет более отрицательный электродный потенциал, чем при 3,3 Гц. Полученные данные указывают на увеличение электрохимической неоднородности и более интенсивную коррозию металла с повышением частоты [c.116]

    ЭЛЕКТРОФОТОГРАФИЯ, см. Ретография. ЭЛЕКТРОХИМЙЧЕСКАЯ ЗАЩИТА металлов от коррозии, основана на зависимости скорости коррозии от электродного потенциала металла. В общем случае эта зависимость имеет сложный характер и подробно описана в ст. Коррозия металлов. В принципе, металл или сплав должен эксплуатироваться в той области потенциалов, где скорость его анодного растворения меньше нек-рого конструктивнодопустимого предела, к-рый определяют, исходя из срока службы оборудования или допустимого уровня загрязнения технол. среды продуктами коррозии. Кроме того, должна быть мала вероятность локальных коррозионных повреждений. Эго т. наз. потенциостатич. защита. [c.458]

    Легирование всеми перечисленными элементами в небольших количествах облегчает самопроизвольный переход сплава в пассивное состояние. С увеличением содержания легирующих компонентов потенциал коррозии сплавов сдвигается в положительную область. Использование таким образом легированного титана расширяет возможность его применения как конструкционного металла в более ахрессивных средах. [c.30]

    Основные условия положительного эффекта катодного легирования пассивируемость металлов или сплавов в данных условиях не слишком большие критические токи пассивирования, которые могли бы быть перекрыты током катодного процесса (при потенциале пассивирования п) достаточно отрицательное значение потенциалов нассивирования Еа и полного пассивирования Ецп Для того, чтобы вводимый катодный компонент смог сместить общий потенциал коррозии системы Ех в зону более положительных потенциалов отсутствие явления перепассивации или анодного пробоя нленки при потенциалах, которые могут устанавливаться при введении катодных легирующих добавок. [c.109]

    Увеличение скорости коррозии сплава в растворах, в которых невозможна пассивация, или при недостаточной концентрации благородных катионов можно объяснить тем, что выделившийся на поверхности снлава благородный металл — эффективный катод приводит к повышению скорости катодной реакции и, следовательно, к повышению скорости анодной реакции растворения сплава. Однако обш,ий потенциал коррозионной системы в этом случае еш,е не достигает значений потенциала пассивации, и сплав не может занассивироваться. [c.175]

    Особо следует остановиться на поведении пассивных металлов и соотношении поверхностей контактирующих металлов. Сплавы, подобно нержавеющим сталям, которые в морской воде могут находиться как в активном, так и в пассивном состоянии, оказывают различное влияние. Будучи в пассивном состоянии, они усиливают коррозию менее благородных металлов, таких как алюминий, сталь и медные сплавы. Если же они находятся в активном состоянии, то претерпевают сами сильную коррозию при контакте с материалами, обладающими более положительным, чем они сами в активном состоянии, потенциалом (медные сплавы, титан, хастеллой и т. д.). В связи с этим наблюдается часто при развитии питтинговой коррозии сильная коррозия нержавеющих сталей при контакте их с более благородными металлами. При контакте нержавеющих сталей с такими неблагородными металлами, как малоуглеродистая сталь, цинк, алюминий, потенциал которых отрицательнее потенциала нержавеющих сталей в активном состоянии, последние электрохимически защищаются. Аналогичным образом можно добиться защиты от общей и точечной коррозии и менее легированных сталей. В частности, сообщается, что крыльчатки из хромистой стали Х13 обнаруживают высокую стойкость в насосах с чугунными корпусами при перекачке морской воды. [c.171]

    Особенно сильной коррозии часто подвергаются сварные соединения, если не приняты меры к тому, чтобы их потенциал не оказался менее благородным, чем потенциал основного металла. Бровер наблюдал сильную коррозию сварного шва на трубках из нержавеющей стали типа 304 (18-8). Трубки многократно травили ингибированной 10%-ной соляной кислотой при температуре 70° С. Лабораторные коррозионные испытания подобных пар в ингибированной соляной кислоте показали, что коррозия в основном развивается на сварном шве (более 250 мм1год). Скорость коррозии металла шва (сталь типа 312) в изолированном виде оказалась в 12—15 раз больше скорости коррозии малоуглеродистой стали или нержавеющей стали типа 304. Разрушение сварного шва в теплообменниках автор объясняет возникновением контактной коррозии между аустенитной и ферритной фазами сплава. Исследования стационарных потенциалов и поляризационных характеристик типичных аустенитных и ферритных нержавеющих сталей подтвердили это предположение. Было показано, что наиболее целесообразно в этом случае использовать инконель А и сварочные электроды из стали типа 310 (24—26% Сг 19—22% Ni макс. 0,25% С). Для трав- [c.185]

    Установление доминирующей роли электрохимического механизма для подавляющего числа практических случаев коррозии металлов и сплавов позволяет в полной мере применить основные законы электрохимической кинетики к анализу, расчетам и прогнозам коррозии. Исходя из электрохимической трактовки, реально устанавливающаяся скорость термодинамически возможного процесса будет определяться кинетикой (скоростями) анодного и катодного процессов, зависящих, как известно, от устанавливающихся электрохимических потенциалов. В конечном итоге зависимость скорости коррозии (5), пропорциональная плотности коррозионного тока х), может быть представленЗ графически, на так называемой поляризационной диаграмме, представляющий зависимость скоростей анодного и катодного процессов от потенциала (рис. 3). На этой диаграмме плотность коррозионного тока 1х определяют по точке пересечения анодной АА и катодной КК поляриза- [c.28]

    Рассмотрим еще один пример применения метода поляризационных кривых для уточнения данных о влиянии температуры на скорость коррозии алюминиевого сплава в 1-н. по С1 растворах N301 с различным значением pH [269]. В растворе с pH = 6 скорость коррозии технического алюминия имеет при 50° С максимум (рис. 102). Для того чтобы объяснить такой ход кривой скорость коррозии — температура, в данном растворе измеряли потенциал металла во времени и снимали поляризационные кривые при разных температурах. Измерения показали (рис. 103), что при О и 20° С потенциал испытывает незначительные измерения, которые происходят главным образом в первые минуты после погружения образцов в раствор, а при 50 и 80° С наблюдается заметное разблагораживание его. Начальные значения 168 [c.168]

    На основании стационарных значений потенциалов при температуре коррозионного испытания (если потенциал за время измерения не устанавливается, берут последнее измеренное значение) для опытов в разбавленной H2SO4 и в НС1 всех концентраций при температурах, близких к 100°, рассчитывают по формулам (69) и (70) степень анодного и катодного контроля. Значение обратимого потенциала анода (Vрассчитывают по формуле (63), активность ионов металла в растворе д,, рассчитывают из весового показателя коррозии (K ), учитывая поверхность электрода и время выдержки его в кислоте. Для расчета приближенно принимают, что анодной со ставляющей является основной металл сплава и что сплав подвергается равномерной коррозии, т. е. содержание металла (в процентах) в общих весовых потерях равно процентному содержанию его в сплаве. [c.105]

    В настоящее время термином Д. обозначают болео широкий круг явлений, приводящих к снижению поляризации электродов. Напр., уменьшение потенциала выделеиия металла нри образовании сплава или амальгамы наз. Д. при выделепии металла . В литературе по коррозии металлов термин Д. применяют для обозначения природы катодного процесса, сопряженного с анодным процессом растворения металла при электрохимич. механизме коррозии. Наир., термины коррозия с кислородной Д. и коррозия с водородной Д, означают, что такими сопряженными процессами являются, соответственно, процессы ионизации кислорода и выделения водорода. [c.532]


Смотреть страницы где упоминается термин Потенциалы коррозии металлов и сплавов: [c.26]    [c.44]    [c.459]    [c.318]    [c.165]    [c.119]    [c.120]    [c.63]    [c.93]    [c.185]    [c.199]   
Теория коррозии и коррозионно-стойкие конструкционные сплавы (1986) -- [ c.0 ]




ПОИСК





Смотрите так же термины и статьи:

Коррозия металлов

Коррозия металлов коррозии

Металлы сплавы

Потенциалы металлов

Сплавы и металлы металлов



© 2025 chem21.info Реклама на сайте