Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Коррозия прогнозирование

    Контакт воды с металлической поверхностью приводит к коррозии металлов, протекающей по электрохимическому механизму. Величина водонефтяного соотношения, характерного для конкретного месторождения, при котором система нефть — вода становится неустойчивой, может быть использована в качестве параметра для прогнозирования скорости коррозионного разрушения оборудования. Углеводороды практически не вызывают коррозию металлов. Однако неполярная фаза в системе нефть — вода оказывает значительное влияние на коррозионную активность водонефтяной системы в целом, повышая или понижая ее. Повышение защитного действия углеводородной составляющей в эмульсионной системе вода — нефть связано в основном с ингибирующими свойствами ПАВ, входящими в природную нефть. Наиболее активные ПАВ — нафтеновые н алифатические кислоты и асфальтосмолистые вещества. Содержание ПАВ в нефтях различных месторождений колеблется в широких пределах. Молекулы нафтеновых и алифатических кислот состоят из неполярной части — углеводородного радикала и полярной части карбоксильной группы, что обусловливает их способность адсорбироваться на границе раздела фаз. Соли нафтеновых кислог более полярны, чем сами кислоты, и более поверхностно-активны. Величина поверхностного натяжения на границе раздела вода — очищенная фракция нефти (например, вазелиновое масло или очищенный керосин) составляет 50—55 мН/м, в то время как поверхностное натяжение на границе раздела вода — сырая нефть не превышает 20—25 мН/м. Это свидетельствует об адсорбции поверхностно-активных компонентов нефти на границе раздела сырая нефть—вода. В щелочной пластовой воде происходит реакция взаимодействия нафтеновой кислоты с ионом щелочного металла. Образующееся соединение более поверхностно-активно, чем нафтеновые кислоты. [c.122]


    Кузнецов В. П. Прогнозирование и механизм углекислотной коррозии газопромыслового оборудования. — Коррозия и защита в нефтегазовой промышленности. 1978, № 2, с. 3—6. [c.225]

    На рис. 274 приведена карта Советского Союза по атмосферной коррозии железа применительно к условиям сельской местности. Аналогичные карты составлены также для цинка, кадмия, меди и алюминия. Влияние загрязненности атмосферы и других факторов на скорость атмосферной коррозии металлов может быть учтено введением соответствующих поправочных коэффициентов, что позволяет, по А. И. Голубеву и М. X. Кадырову, прогнозирование коррозии металлов в атмосферных условиях. [c.383]

    Вопрос о методике измерения не стоял бы так остро и не стоил бы подробного обсуждения, если бы показатель содержание солей использовали только как небольшую поправку к массе нефти брутто. Однако существует гораздо более важный аспект присутствия солей - коррозионная активность нефти, которая резко возрастает при увеличении их содержания. Соответственно увеличиваются затраты на защиту от коррозии и ремонт технологической аппаратуры. В конечном счете, это увеличивает затраты на транспортировку и (или) переработку тонны нефти. Очевидно, что с учетом этих факторов стоимость тонны нефти уменьшается по мере увеличения содержания солей. Установлено, что наиболее активными коррозионными компонентами являются хлористые соли, точнее анион хлора. Коррозионная активность остальных солей намного ниже. Поэтому для прогнозирования коррозионных процессов, и, следовательно, снижения цены нефти актуально измерение содержания лишь хлористых солей. [c.255]

    Гораздо шире набор моделей для прогнозирования кинетики коррозии. Прогнозирование кинетики возможной коррозии в [c.177]

    В реальных условиях эксплуатации скважин двухфазная среда углеводород — электролит находится в виде эмульсии типа вода в масле или масло в воде. В слабо-обводненных скважинах встречается обычно эмульсия первого типа, в сильнообводненных скважинах — второго. Тип эмульсии определяют измерением ее удельной электропроводности. Эмульсия В/М имеет очень низкую электропроводность, поэтому, если электропроводность раствора настолько мала, что ее не удается измерить, эмульсию относят к типу вода в масле. Независимо от типа эмульсии коррозионным агентом всегда является водная фаза. Величина водонефтяного отношения для конкретного месторождения, при которой система нефть — вода становится неустойчивой, может быть использована в качестве специфического параметра для характеристики и -прогнозирования коррозии на нефтепромыслах [12]. [c.13]


    Отсутствие совершенных средств контроля зарождения и развития повреждений металла, общепринятых принципов назначения новых сроков службы оборудования и трубопроводов с учетом их фактического состояния и условий работы не позволяют осуществлять высокоточное прогнозирование момента отказа конструкции. Оценку показателей надежности и определение остаточного ресурса оборудования и трубопроводов по зафиксированным параметрам их технического состояния проводят согласно научно-технической документации [57, 62-65] и методикам [30, 64, 66-81, 89 91]. Оценку фактической нагруженности оборудования и трубопроводов выполняют расчетными методами с учетом фактической геометрии и размеров конструкций, вида и величины выявленных дефектов и вызываемой ими концентрации напряжений, а также результатов экспериментальных исследований напряженно-деформированного состояния металла и изменения его физико-механических свойств. За исключением трещин механического или коррозионного происхождения развитие остальных повреждений трубопроводов прогнозируют по результатам внутритрубной или наружной дефектоскопии и контроля коррозии. [c.139]

    Метод оценки и прогнозирование коррозии для изменившихся условий на ОГКМ Отчет о НИР / ВНИИГАЗ.- М., 1994. - 28 с. [c.354]

    Методика прогнозирования остаточного ресурса нефтезаводских трубопроводов, сосудов, аппаратов и технологических блоков установок подготовки нефти, подвергающихся коррозии.— М. Минтопэнерго, 1993.— 88 с. [c.356]

    В настоящей книге излагаются состояние и решение перечисленных задач, приводятся основные сведения о подземной коррозии трубопроводов и резервуаров, рассматриваются вопросы механизма защитного действия покрытий, действительные условия их службы, проблема прогнозирования изменения эффективности действия изоляционных покрытий. Освещаются основные методы защиты изоляционными покрытиями и средствами электрозащиты, а также технико-экономические аспекты ее. [c.5]

    Герасимов В.В. Прогнозирование коррозии металлов. - М. Металлургия, [c.235]

    Соединения, проявляющие поверхностно-активное действие, оказывают существенное влияние на качественные показатели нефтяного сырья и, как следствие, изменяют параметры технологических процессов. Указанные поверхностно-активные вещества могут быть естественными, либо синтетическими, искусственно вводимыми в нефтяные системы, например, в качестве ингибиторов коррозии и парафиноотложения, пеногасителей, депрессоров и т.п. Прогнозирование действия подобных реагентов представляет важную прикладную задачу нефтяной отрасли. В настоящем разделе представлены результаты калориметрических исследований нефтяных систем в присутствии поверхностно-активных веществ, в качестве которых применяли синтетические депрессоры. [c.157]

    ПРОГНОЗИРОВАНИЕ КОРРОЗИИ ПОДЗЕМНЫХ ТРУБОПРОВОДОВ [c.43]

    Прогнозирование коррозии трубопроводов 45 360 [c.36]

    Освещен комплекс вопросов по прогнозированию долговечности магистральных трубопроводов. Показаны характерные внешние проявления опасного вида разрушения магистральных газопроводов - коррозионного растрескивания металла катодно-защищенных труб и современные представления о механизме его возникновения. Рассмотрены вопросы прогнозирования коррозионного растрескивания и диагностики очагов растрескивания прогнозирования коррозионно-усталостных разрушений магистральных нефтепродуктопроводов, эксплуатирующихся в условиях циклического нагружения прогнозирования долговечности магистральных трубопроводов в условиях механохимической коррозии. Описан производственный опыт работ по ликвидации свищей и микротрещИн на магистральных конденсатопроводах предприятия Сургутгазпром . Приведена методика определения количества вытекшего продукта из свищей. [c.2]

    ПРОГНОЗИРОВАНИЕ ДОЛГОВЕЧНОСТИ И ОСТАТОЧНОГО РЕСУРСА МАГИСТРАЛЬНЫХ ТРУБОПРОВОДОВ В УСЛОВИЯХ ОБЩЕЙ КОРРОЗИИ [c.119]

    Прогнозирование долговечности трубопроводов в условиях общей механохимической коррозии [c.119]

    Прогнозирование остаточного ресурса трубопроводов, подверженных общей и язвенной коррозии [c.123]

    Идеальным является, конечно, испытание в естественной среде, т. е. в среде, максимально приближающейся к эксплуатационной. Однако система покрытий достаточно эффективно выполняет свои функции защиты от коррозии, и период разрушения в этих условиях становится слишком длительным. В связи с этим проводят ускоренные коррозионные испытания, непрерывно поддерживая режим максимальных механических напряжений, изменяя температуру или влажность либо используя искусственную среду с повышенной коррозионной активностью. Хотя с помощью этих средств разрушение возникает за несколько дней, часов и даже минут (в крайних случаях), ускоренные испытания могут вызвать коррозию, отличную от возникающей в условиях эксплуатации, из-за сложного характера процесса коррозии. Таким образом, прогнозирование срока службы или способа разрушения на основании результатов ускоренных испытаний можно считать обоснованным только после соответствующих уточнений в ходе тщательных натурных испытаний. [c.156]


    ПРОГНОЗИРОВАНИЕ РАЗВИТИЙ КОРРОЗИИ ПО [c.56]

    В начальный период времени скорость окисления максимальна и затем уменьшается во времени. Если 1 < < 2, то окисление определяется скоростью диффузии частиц и скоростью окисления металла кислородом (область смешанной кинетики). Предполагается, что при выполнении указанного условия процесс окисления сопровождается постоянным разрушением оксидной пленки, так как Уо > V m- При п >2 происходит изменение параметров диффузии через пленку, связанное с появлением значительных напряжений или структурными изменениями пленки. При п = 2 скорость процесса окисления определяется скоростью диффузии частиц через пленку. Параболическая зависимость окисления широко встречается в практике при достаточно высоких температурах для большего ряда окислителей и металлических материалов, что позволяет применить параметрический метод для оценки скорости коррозии и прогнозирования коррозионных разрушений при наличии сравнительно небольшого количества экспериментальных данных [13]. Этот вопрос рассмотрен в главе 3. [c.22]

    Установлена (рис, 13, стр. 73) связь между анодным током растворения, уменьшением потенциала и потерей массы металла для характерных участков кривой растяжения в области упругой (точка 2) и пластической (точки 3, 4, 5) деформаций. Это подтверждает возможность прогнозирования скорости коррозии деформированного металла по данным экспрессного определения величины механохимического эффекта в динамическом режиме нагружения. [c.72]

    Целью коррозионных испытаний является установление вида и масштаба коррозионных процессов и изменения свойств металлов в результате коррозии. Для определения стойкости испытуемого металла в коррозионной среде в требуемых условиях оценивают качественные и количественные изменения металлов, вызванные коррозионной средой. Испытания проводят для выбора металлов и варианта защиты, а также для прогнозирования срока службы конструкции или оборудования. [c.90]

    В настоящее время в СССР проводятся исследования по изучению агрессивности различных атмосфер в целях прогнозирования атмосферной коррозии металлов. Так, в результате работ Института физической химии АН СССР разработаны методы приближенного прогнозирования разрушения черных и цветных металлов в любом климатическом районе [16, 17]. [c.6]

    С современных позиций рассмотрено электрохимическое поведение металлов под адсорбционными и фазовыми слоями электролитов. Приведено большое количество экспериментальных данных о влиянии внешних условий на развитие коррозии металлов. На основе физико-математических моделей рассмотрена возможность использования ускоренных лабораторных испытаний для прогнозирования коррозионного поведения металлов в различных климатических зонах. Дана оценка эффективности современных средств и методов защиты металлов от коррозии. [c.2]

    На современном этапе существуют большие трудности в прогнозировании надежности изделий. Теория атмосферной коррозии металлов, как раздел физикохимической науки, может рассматриваться в качестве составной части общей теории надежности. [c.6]

    Ускоренные испытания на атмосферную коррозию. Ускоренные коррозионные испытания металлов и средств защиты являются частью проблемы прогнозирования надежности приборов, машин и прозе [c.86]

    В последние годы ускоренные испытания, имеющие своей целью прогнозирование коррозионной стойкости металлов или покрытий, получили дальнейшее развитие. В табл. 12 сопоставлены наблюдаемые и рассчитанные из результатов ускоренных испытаний скорости коррозии цинка, кадмия и алюминия в различных климатических зонах. В расчетах использовали вышеприведенные модели атмосферной коррозии. Полученный к настоящему времени экспериментальный материал [84, 85] свидетельствует о хорошей корреляции рассчитанных по результатам ускоренных испытаний и реально наблюдаемых величин коррозии. [c.88]

    Во втором томе (том 1. Основы теории и практики применения вышел в 1997 г. под ред. Д. Л. Рахманкулова) приведен ретроспективный анализ коррозионного состояния и технологий ингибиторной защиты оборудования и трубопроводов Оренбургского и Астраханского нефтегазоконденсатных месторождений. Рассмотрены методы диагностики, прогнозирования дефектности и оценки остаточного ресурса металлоконструкций, эксплуаттующихся в условиях воздействия сероводородсодержащих сред. Осооое внимание уделено методологии разработки ингибиторов коррозии под напряжением, анализу позитивных и негативных моментов в применении ингибиторов отечественными и зарубежными фирмами. [c.2]

    Особое внимание уделено коррозионному мониторингу оборудования, методам и средствам прогнозирования его дефектности, определению важнейших характеристик надежности металлоконструкций, внутритрубной диагностике газопроводов, методам оценки остаточного ресурса узлов оборудования, опыту применения отечественных и зарубежных ингибиторов коррозии на этих объектах, а также новым ингибиторам коррозии под напряжением, разработанным на основе концепций, которые изложены в первом томе 11астоящей монографии [1]. [c.6]

    Сложность и малоизученность рассматриваемой проблемы обусловлены тем, что она охватывает многие вопросы физико-химической механики материалов, металловедения, механики твердого деформируемого тела и разрушения, надежности и аппаратостроения. За последние годы достигнуты успехи в области механохимии металлов и прочности конструкций в агрессивных средах. В то же время работ по изучению закономерностей развития механохимической повреждаемости при изготовлении и эксплуатации оборудования оболочкового типа еще мало. Отсутствуют математические модели механохимической повреждаемости и прогнозирования работоспособности оборудования для подготовки и переработки нефти, учитывающие специфические условия службы материала, явление технологического наследования, наличие в конструктивных элементах механической неоднородности, технологических дефектов и др. В практике проектирования оборудования коррозионный фактор учитывается лишь при выборе марок сталей и допускаемых напряжений на основании экспериментальных кривых долговечностей в координатах напряжение-время до разрушения . Прибавка на компенсацию коррозии обычно /станавли-вается без учета реальных процессов взаимодействия напряженного металла и рабочих сред в процессе эксплуатации оборудования. [c.4]

    В книге излагаются основные сведения о коррозии трубопроводов и резервуаров, освещаются методы защиты от коррозии изоляционными покрытиями, протекторами, катодными станциями и электродре-нажными установками. Рассмотрены вопросы защитных свойств изоляционных покрытий в различных почвенно-климатических условиях, вопросы прогнозирования срока службы изоляционных покр1атий. Приведены расчет катодной защиты трубопроводов и резервуаров и сведения об изысканиях и электрических измерениях. [c.2]

    Оборудование нефтяных и газовых месторождений по всей технологической линии (добыча, транспорт, хранение, переработка) подвергается воздействию гетерогенной среды, состоящей из двух несмешивающихся фаз углеводород - электролит. Агрессивность среды определяется физико-химическим состоянием и составом водной и углеводородной фаз, однако инициатором коррозионного процесса всегда бывает вода. Вода в газожидкостный поток попадает из двух источников она конденсируется из перенасыщенных паров при снижении температуры газового потока по мере его продвижения из пласта либо пластовая вода захватывается газовым или нефтяным потоком. За критерий коррозионной агрессивности скважины нельзя брать только количество добьтаемой воды - необходимо учитьшать соотношение воды и углеводородной фазы. Велич 1на водонефтяного отношения для конкретных месторождений может быть использована в качестве специфического параметра для характеристики и прогнозирования коррозии на нефтепромыслах [10].  [c.26]

    Наиболее опасными для металла труб линейной части магистральных трубопроводных систем, по которым транспортируются природный газ, нефть и другие углеводороды, являются коррозионное рас фескивание (КР), зарождающееся на внешней, катодно-защищенной поверхности труб, коррозионная усталость и общая коррозия, усиленная воздействием механических напряжений. Причем первый вид коррозионно-механических разрушений характерен для магистральных газопроводов, второй - для магистральных нефте- и продуктопроводов. Проявление третьего вида разрушений наблюдается в системах сбора углеводородом Общая блок-схема прогнозирования коррозионно-механических разрушений магистральных трубопроводов приведена на рисунке. [c.3]

    В пятом разделе приведены методы прогнозирования трубопроводов, подверженных общей мехгшохимической коррозии. Там же приводятся методы оценки остаточного ресурса трубопроводов, имеющих повреждения в стенке трубы в виде коррозионных язв. [c.5]

    Одновременное воздействие на металл коррозионных сред и механических напряжений вызывает коррозионно-механическое разрушение оборудования, связанное с проявлением взаимосопряженных механохимических явлений. При этом вследствие коррозии стенок сосудов давления и соответствующего их утонения происходит увеличение кольцевых напряжений. В свою очередь, согласно теоретическим представлениям механохимии металлов [32], это вызывает рост скорости коррозии и еще большее утонение стенок, В связи с этим, прогнозирование долговечности сосудов давления, базирующееся на предпосылке постоянства скорости коррозии в течение установленного ресурса дает изначально завышенное ее значение. Поэтому для реальной оценки долговечности необходимо проанализировать изменение кольцевых [c.119]

    Гареев А. Г., Насырова Г.И. Прогнозирование долговечности оборудования, эксплуатирующегося в условиях общей механохимической коррозии//Проблемы сбора, подготовки и транспорта нефти и нефтепродуктов. Тр. ин-та ИПТЭР, 1994. С. 58-59. [c.154]

    Для тех потребителей, которые производят антикоррозионную бумагу для собственных нужд, правильный выбор последней включает также правильный выбор ингибитора, бумаги-основы для ее производства и технологических параметров процесса, обеспечивающих получение продукции высокого качества, включая прогнозирование срока службы антикоррозионной бумаги с точки зрения сохранности в ней летучего ингибитора коррозии металлов, атмо-сферостойкости и биостойкости. Приведенные ниже сведения позволят потребителю правильно решить те вопросы, которые возникают при производстве и использовании антикоррозионной бумаги. [c.93]

    Длина чисто коррозионного подрастания трещины А1ц за 1ЩКЛ, равно как и количество абсорбированного за щпсл водорода 0н J. определяются величиной з. д. с. гальванопары СОП - старая СОП в трещине, а также кинетикой ее спада во времени. Следовательно, свойства СОП по месту разлома металла в электролите в комплексе с таким показателем, как вязкость разрушения, могут служить критериями прогнозирования стойкости материалов к коррозии под напряжением. [c.102]


Смотреть страницы где упоминается термин Коррозия прогнозирование: [c.3]    [c.107]    [c.135]    [c.295]    [c.69]   
Кислородная коррозия оборудования химических производств (1985) -- [ c.172 , c.177 ]




ПОИСК







© 2025 chem21.info Реклама на сайте