Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Вольфрам в рудах

    Вольфрам получают, восстанавливая оксид вольфрама (VI) водородом. Вычислите объем водорода, приведенный к нормальным условиям, который потребуется для восстановления концентрата вольфрамовой руды массой 200 кг (массовая доля WOg в концентрате равна 92,8%). [c.117]

    Разложение руд и концентратов, содержащих рений, производят в азотной или в смеси азотной и соляной кислот при нагревании. Если в минералах или рудах содержатся тантал, ниобий, вольфрам, титан, кремний, то для разложения применяют смесь азотной и фтористоводородной кислот. [c.182]


    Менее точным, но весьма распространенным методом восстановления, является восстановление железа дихлоридом олова. Мешают определению ванадий, молибден и вольфрам, которые иногда содержатся в небольших количествах в железных рудах и также восстанавливаются дихлоридом о,иова. [c.403]

    Купрон интересен также в связи с тем, что осадки с медью он дает только в аммиачной среде, а в кислой осаждает молибден (VI) и вольфрам (VI). В упомянутой выше работе Т. К. Мусиной этому вопросу уделено некоторое внимание и показана желательность дальнейшей разработки такого способа применения купрона, который позволил бы определять молибден в присутствии меди и, наоборот, медь в присутствии молибдена, пользуясь аликвотными частями одного и того же раствора после разложения пробы. Поскольку медно-молибденовые руды весьма распространены, такой метод мог бы иметь практическую ценность. [c.254]

    Как правило, основные источники природного сырья кроме необходимого компонента содержат и другие ценные вещества. К примеру, в железной руде часто присутствуют медь, титан, ванадий, кобальт, цинк, фосфор, сера, свинец и другие редкие элементы. В полиметаллических рудах содержится более 50 ценных элементов, в том числе олово, медь, кобальт, вольфрам, молибден, серебро, золото, металлы платиновой группы. Часто сопутствующие элементы обладают большей ценностью, чем основные, ради которых организовано производство. В природном газе находятся азот, гелий, сера, а в составе газового конденсата — гомологи метана. В нефтях содержатся различные соединения серы и им сопутствуют попутные газы, в состав которых входят ценные углеводороды, а также пластовые воды с содержанием йода, брома и бора. Полное использование вещественного потенциала сырья выходит за рамки одной ХТС и становится возможным только при комплексной переработке сырьевых ресурсов, обеспечиваемой многими отраслями промышленности. [c.307]

    Наиболее распространенными катализаторами являются железная болотная руда, гидрат окиси железа, осажденный на различных но( ителях, сернистый молибден как таковой и с различными добавками, сернистый вольфрам, который значительно активнее сернистого молибдена, и др [c.315]

    При хлорировании газообразным хлором, хлоридами серы, тетрахлоридом углерода образуются летучие хлориды вольфрама и других элементов, а также некоторые нелетучие хлориды. Летучие хлориды улавливают селективно, очищают ректификацией и другими методами. Известно, в частности, хлорирование бедных оловянно-вольфрамовых руд или концентратов с предварительным восстановлением концентратов. После восстановления олово хлорируется при 350°, а вольфрам — при 500—900°. [c.248]


    Мышьяковые соединения весьма распространены в природе и в небольших количествах содержатся во многих рудах, в морской Воде и в водах источников. В большинстве случаев мышьяк входит в состав полиметаллических руд, содержащих цинк, свинец. Никель, кобальт, медь, серебро, золото, олово, вольфрам и серу. Количество мышьяка в таких рудах обычно меньше 1 % и его [c.656]

    Минералы, руды и месторождения. Вольфрам доволыю широко распространен в природе. Его кларк2-10 % (по А. П. Виноградову), а по более ранним данным других исследователей — от 4,8 до 7 -10 %. В земной коре он находится в составе окисленных минералов — солей вольфрамовой кислоты, которые отлагаются в процессе выноса элементов из зоны первичной пегматитовой кристаллизации. Этим вольфрам геохимически отличается от молибдена и относится к литофильным элементам. Указанные процессы способствовали ассоциации вольфрама с геохимически легкоподвижными элементами—В1, 5п, Мо, Аз, Ы, Ве и др. [c.246]

    Относительная интенсивность изотопических компонентов аналитической линии элемента в минимальной степени зависит от изменения условий испарения или возбуждения атомов элемента в источнике света и определяется только относительной концентрацией изотопов в пробе. Изотопическое смещение для линий урана достигает значительной величины. Например, для линии 4244,4А оно составляет 0,23А. Изотопическая структура этой линии может быть разрешена с помощью спектрографа ИСП-51 с камерой УФ-85. Эта линия наиболее удобна для определения урана в рудах. Недостатком является наложение линии вольфрама. Однако практически вольфрам встречается редко в количестве, способном изменить относительную интенсивность линий урана. [c.251]

    При определении молибдена в вольфрамовых рудах, ферровольфраме и технической вольфрамовой кислоте полученное окрашенное роданидное соединение экстрагируют бутилацетатом [1546]. Вольфрам удерживают в водной фазе добавлением фторида натрия. Менее пригодна для этой цели винная или лимонная кислота. [c.222]

    Это вольфрам W (от немецкого вольф — волк и рам — взбитые сливки). При выплавке олова примесь минерала вольфрамита в руде дает много шлака и снижает выход олова. [c.226]

    Комбинированная схема рудоподготовки вольфра-мо-молибденовой руды так же, как и медной, улучшила результаты обогащения по сравнению со стандартным способом дезинтеграции. [c.729]

    Производство элемента № 50 из руд и россыпей всегда начинается с обогащения. Методы обогащения оловянных руд довольно разнообразны. Применяют, в частности, гравитационный метод, основанный на различии плотности основного и сопутствующих минералов. При зтом нельзя забывать, что сопутствующие далеко не всегда бывают пустой породой. Часто они содержат ценные металлы, например вольфрам, титан, лантаноиды. В таких случаях из оловянной руды пытаются извлечь все ценные компоненты. [c.43]

    Крупные кристаллы вольфрамита или шеелита — большая редкость. Обычно вольфрамовые минералы лишь вкраплены в древние гранитные породы — средняя концентрация вольфрама в итоге оказывается в лучшем случае 1—2%. Поэтому извлечь вольфрам из руд очень трудно. [c.181]

    Металлические хром, молибден и вольфрам получают обычно карботермическим или металлотермическим восстановлением их оксидов или электролизом расплава их солей. Для нужд черной металлургии обычно нет необходимости получать очень чистый легирующий металл. Поэтому при карботермическом восстановлении совместно с железными рудами получают обычно феррометаллы (феррохром, ферромолибден, ферровольфрам). [c.335]

    Вольфрам (Wolfram). По распространенности в земной коре [0,007% (масс.)] вольфрам уступает хрому, но превосходит молибден. Природные соединения вольфрама в большинстве случаев представляют собой вольфрам аты — соли вольфрамовой кислоты H2WO4. Так, важнейшая вольфрамовая руда — вольфрамит— состоит из вольфраматов железа и марганца. Часто встречается также минерал шеелит aWO,.. [c.660]

    Природные ресурсы. Содержание в земндй крре составляет Сг 3,5-10-2% jv Q 1 .10- %, W ЫО- %, Данные элементы встречаются только в виде соединений. Основное соединение хрома — хромистый железняк РеО-СгдОз,. Важнейшие минералы Мо и W молибденит M0S2, шеелит aWQ4 и вольфр.амит (Fe, Mn)W04. Минералы, содержащие Мо, обычно встречаются в полиметаллических рудах. [c.527]

    Пустая порода руды состоит из оксидов кремния, алюминия, кальция и магния, образующих разнообразные силикаты и алюмосиликаты. Кроме пустой породы в железных рудах содержатся в виде оксидоб такие металлы как марганец, хром, никель, молибден, вольфрам, ванадий. [c.50]

    В полученном солянокислом растворе непосредственно определяют железо. Очень редко приходится иметь дело с мешающими элементами и устранять их влияние. К таким элементам относятся ванадий, молибден и вольфрам, которые иногда могут находиться в незначительном количестве в железной руде. При восстановлении железа двухлористьш оловом эти элементы также восстанавливаются до низших степеней окисления и затем титруются перманганатом. В случае их присутствия анализ усложняется и для определения железа приходится пользоваться другими методами или вводить ряд дополнительных операций, которые подробно рассматриваются в специальных курсах анализа. [c.382]


    Оксидные руды. В соединениях с кислородом встречаются многие металлы—железо, алюминий, хром, вольфрам, марганец, олово и ряд других. Оксиды металлов могут образовать соединения между собой, если они находятся в различных степенях окисления, или с оксидами неметаллов, образуя соли. Примером простых оксидных руд могут служить Р е20з — гематит, Р СзОз 1 0 — гетит, А1 зОд — боксит, Т Оа — рутил, МпОа — пиролюзит, МпзОд — браунит, ЗпОз — касситерит и многие другие. [c.284]

    Промышленное значение имеет лишь комплексное сырье, из которого скандий может извлекаться попутно. К таким сырьевым источникам в первую очередь относятся урановые руды, содержащие торий, РЗЭ и скандий (в среднем 0,001 %). При современных размерах добычи руды потенциальное извлечение ЗсгОз может составить 500 т в год [3]. В качестве второго источника следует назвать касситериты и вольфра-миты. Окиси скандия в них хотя и сотые (редко десятые) доли процен- [c.17]

    Элементы подгруппы хрома в природе. Получение и применение. Хром, молибден и вольфрам в природе встречаются только в виде соединений. Наиболее распространен из них хром его содержание в земной коре составляет 2-10- % (масс.). Важнейшим минералом, в состав которого входит хром, является хромит хромистый железняк) Ре(Сг02)2- Содержание молибдена в рудах не превышает 1—2% (масс.), а в земной коре он находится в количестве 2,5-10- % (масс.). В промышленности для выделения молибдена используют следующие минералы молибденит (молибденовый [c.472]

    Несмотря на перечисленные достоинства, применс-Н1 с окислителей связано со следующими недостатками. Обычно предварительная подготовка пробы к анализу состоит в переведении анализируемого материала в раствор посредством обработки различными кислотами чаще всего применяют азотную кислоту или ее смесь с хлороводородной или серной кислотой. Так, медные сплавы растворяют в азотной кислоте, причем содержащиеся в них элементы — железо, олово и другие—превращаются в соединения высших степеней окисления. При анализе различных чугунов и сталей необходимо определять ванадий, молибден, вольфрам, титан и нс-которые другие легирующие элементы, которые вследствие обработки пробы окислительными агентами также содержатся в полученном растворе в высших степенях окисления. Железные руды содержат оксиды железа растворяя их в хлороводородной кислоте с добавками различных окислителей, получают железо в степени окисления +3 и т. д. [c.435]

    V I В-г р у п п ы. Самым распространенным минералом хрома является хромистый железняк (хромит) ГеО-СггОз. Вторая по значимости руда хрома — кро-коит — представляет собой хромат свинца РЬСг04- Наиболее распространенный минерал молибдена — молибденит (молибденовый блеск) МоЗг. Вольфрам представлен в природе главным образом в виде вольфраматов двухвалентных металлов. К ним относятся, например, вольфрамит — изоморфная смесь вольфраматов железа и марганца переменного состава Гег Мп1-х У04, шеелит Са У04, штольцит РЬ У04 и т.д. Помимо того, встречается вольфрамовый блеск У8г в смеси с молибденитом. [c.449]

    Соединении мышьяка довольно широко распространены в природе, но в небольших количествах они встречаются во многих рудах, о морской воде и в водах источников. В большинстве с.1учаев мышьяк входит в состав полиметаллических руд, содержаш.их цинк, свинец, вольфрам и серу (до 1%). [c.52]

    Экстракционным путем эффективно извлекается вольфрам из растворов после кислотной промывки шеелитовых промежуточных продуктов обогаш,ения руд скарновых месторождений, а также из натрий-вольфраматных растворов, получаемых при автоклавно-содовом вскрытии тех же промежуточных продуктов, после очистки этих растворов от Si, F, Р, Мо. При экстракции спиртовыми растворами аминов, содержащими 10 г/л НС1, получается органическая фаза, в которой 40 г/л WO3. Реэкстракция раствором аммиака при 50—60° дает раствор с 80—85 г/л WO3 и рафинат с 0,05—0,2 г/л WO3. Извлечение в паравольфрамат 83% при чистоте более 99,9%. Чтобы при реэкстракции не получалось осадка паравольфрамата, процесс ведут при 50—60° [37]. [c.269]

    Мы видим, что меньший по размеру атом хрома относительно легко теряет 8-электроны, отрыв же -электрона, судя по величине третьего потенциала ионизации, требует затраты энергии почти на 4 эВ больше, чем в случае молибдена, и на 7 эВ больше, чем в случае вольфрама. Соответственно, для хрома в твердых соединениях и в растворах наиболее характерна достаточно низкая степень окисления +3, а для молибдена и вольфрама +6. Производные хрома(У1) - хроматы и дихроматы - сильные окислители, а мо-либдаты и вольфраматы совершенно не проявляют окислительных свойств и входят в состав руд этих металлов (например, повеллит СаМо04 и шеелит Са У04). С другой стороны, низкие степени окисления малохарактерны для молибдена и вольфрама, в отличие от хрома, они совсем не образуют аквакатионов в водных растворах. Под действием царской водки и азотной кислоты при нагревании металлический молибден медленно переходит в раствор в виде сложной смеси анионных форм Мо(У1), содержащих от одного до 24 атомов молибдена. Напомним, что полимеризация хрома(У1) ограничена образованием дихроматов СГ2О7. Вольфрам практически не растворяется в кислотах, но косвенными методами могут быть получены многочисленные поливольфраматы (подробнее о них см. в разд. 29.3). [c.368]

    Магнитное обогащение развивается как в направлении конструирования н вых сепараторов, -гак 11 в направлении освоения новых объектов обработки. Бл годаря наличию железа в извлекаемых или сопутствующих минералах, они м гут обладать слабомагнитными свойствами и обогащаться на современных сеп раторах с мощными магнитными полями, например, медные, асбестовые, вольфр митовые, касситеритовые, каолиновые, лимонитовые и фосфатные руды [213, 22( Расширяется применение магнитной сепарации при доводке концентратов р редких металлов [18]. [c.134]

    При определении молибдена в присутствии вольфрам1а добавляют 2%-ный раствор лимонной кислоты (pH 1,8) в этом случае вольфрам почти не взаимодействует с толуол-3,4-дитио-лом и практически не мешает определению молибдена [464]. Джефри [875] применял лимонную кислоту вместе с ортофосфорной при определении небольших количеств молибдена в различных вольфрамовых рудах. [c.91]

    Нахождение в природе. Молибден и вольфрам относятся к малораспространенным элементам в земной коре содержание молибдена составляет 3-10- вольфрама Ы0 %. Основными минералами молибдена являются молибденит, или молибденовый блеск МоЗа (сульфид молибдена), по внешнему виду напоминающий графит молибденит часто содержит в виде изоморфной примеси рений (10 —10 %) повеллит СаМо04 (молибдат кальция) нередко часть молибдена ( — 10%) в повеллите замещена вольфрамом Са(Мо, W)04, Меньшее значение имеют минералы вульфенит РЬМо04 (молибдат свинца) и молибдит лгРезОз-г/МоОз-геНзО. Молибден содержится также в медных и медно-свинцовых рудах (до 0,01%), которые используются для его извлечения при комплексной переработке сырья. [c.164]

    Для разложения вольфрамовых руд с низким содержанием вольфрама, а также при определении вольфрама в касситерите применяют сплавление пробы с едким натром и последуюшее выщелачивание плава водой. При этом вольфрам в виде растворимого вольфрамата натрия переходит в раствор, в котором можно определить концентрацию вольфрама фотометрическим методом. Для минералов с высоким содержанием вольфрама такой способ разложения обычно не применяют, так как ионы щелочных металлов препятствуют последующему гидролитическому выделению вольфрамовой кислоты. [c.170]

    Определение в рудах, содержащих титан, вольфрам, молибден и кром, роданидом [c.113]

    Между прочим, наши предки располагали более богатыми оловянными рудами, чем мы. Можно было выплавлять металл непосредственно из руд, находящихся на поверхности Земли и обогащенных в ходе естественных процессов выветривания и вымывания. В наше время такиа РУД уже нет. В современных условиях процесс получения олова многоступенчатый и трудоемкий. Руды, из которьн выплавляют олово теперь, сложны по составу кроме эле мента № 50 (в виде окисла или сульфида) в них обычно присутствуют кремний, железо, свинец, медь, цинк, мышьяк, алюминий, кальций, вольфрам и другие элементы. Нынешние оловянные руды редко содержат больше 1% 8п, а россыпи —и того меньше 0,01—0,02% 8п. Этс значит, что для получения килограмма олова необходимс добыть и переработать по меньшей мере центнер руды. [c.42]

    ПОЧЕМУ ВОЛЬФРАМ Это слово немецкого происхождения. Известно, что раньше оно относилось не к металлу, а к главному минералу вольфрама — вольфрамиту. Есть предположение, что ато слово было чуть ли не бранным, В XVI—XVII вв. вольфрам считали минералом олова, (Он действительно часто сопутствует оловянным рудам.) Но из руд, содержащих вольфрамит, олова выплавлялось меньше, кто-то словно пожирал его. [c.188]

    Трудно назвать рудное месторождение, в котором 1 было бы висмута, но еще сложнее назвать такое месторо> дение, в котором концентрация его была бы столь высоко что оно могло бы с выгодой разрабатываться только ра висмута. Как же быть Поступают просто висмут бер отовсюду, где извлечение его экономически (или техн логически) оправдано. Вот перечень сырьевых источи ков висмута, обеспечивающих около мирового (61 СССР) спроса медные, свинцовые и серебряные рудни Перу, свинцовые месторождения Мексики, медные свинцово-цинковые руды Японии, медные, свинцовые серебряно-кобальтовые месторождения Канады, вольфр мово-оловянные и оловянно-серебряные руды Боливии. [c.278]


Смотреть страницы где упоминается термин Вольфрам в рудах: [c.59]    [c.335]    [c.419]    [c.127]    [c.191]    [c.180]    [c.62]    [c.169]    [c.633]   
Химико-технические методы исследования (0) -- [ c.546 ]




ПОИСК





Смотрите так же термины и статьи:

Вольфрам в вольфрамовых рудах

Вольфрам открытие в рудах

Вольфрам руды, полный анализ

Вольфрам, минералы в рудах

Вольфрам, минералы примесей в рудах

Вольфрам, определение в рудах

Вольфрамовые руды быстрое определение вольфрам

Молибденовые руды вольфрама

Оловянная руда, определение вольфрама

Определение свинца в рудах, содержащих висмут, сурьму, олово и вольфрам

Определение соединении вольфрама в рудах и продуктах их обогащения



© 2025 chem21.info Реклама на сайте