Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Олово координационное число

    Соединения германия (П), олова (П) и свинца (II). Координационные числа элементов подгруппы германия в степени окисления +2 более разнообразны, чем в степени окисления +4, и равны 3, 4, 5 и 6. [c.429]

    Во всех перечисленных случаях между соседними атомами существуют локализованные гомеополярные связи. Поэтому максимальное количество соседей у одного атома равно числу его валентных электронов (см. структуру алмаза). Если число валентных электронов меньше четырех, они не способны к образованию локализованных связей. Стремление к проявлению. высоких координационных чисел характерно для структур металлов. Как видно из табл. В.ЗЗ, граница между металлами с высокими координационными числами и полуметаллами с низкими координационными числами проходит через клетку олово . На примере двух его форм ( серого и белого ) мож-1Н0 проследить переход от неметаллических к металлическим структурам. В то время как серое олово кристаллизуется в решетке алмаза (к.ч. = 4), структуру белой модификации можно рассматривать как тетрагонально искаженную алмазную к. ч. возрастает до 6 (приближается к металлическому состоянию ). С дрз гой стороны, 5р -гибридизация, свойственная структуре серого олова, сохраняется даже при значительной деформации (тенденция к проявлению направленных связей, свойственная структурам неметаллов). Результаты ряда исследований влияния температуры на структуру полуметаллов позволяют наметить следующую картину  [c.578]


    Некоторые простые вещества (кремний, германий, серое олово) имеют кристаллические решетки, принадлежащие к структурному типу алмаза, ячейка такой решетки изображена на рис. 1.78. В решетке алмаза каждый атой углерода связан четырьмя ковалентными связями с четырьмя другими атомами углерода. Ячейка этой решетки построена следующим образом. К 14 атомам, составляющим гранецентрированное кубическое расположение, добавляется еще 4 атома. Последние располагаются внутри куба в центре тетраэдров, образованных атомом, находящимся в вершине куба, и его тремя ближайшими соседями, расположенными в центрах граней. Координационное число атомов в решетке алмаза равно 4. [c.159]

    Структура элементных полупроводников подчиняется так называемому правилу октета , согласно которому каждый атом имеет (8 — №) ближайших соседей, где № — номер группы периодической системы, в которой находится данный химический элемент. Например, координационные числа в полупроводниковых модификациях углерода, кремния, германия, олова равны четырем (8—IV), в кристаллах фосфора, мышьяка, сурьмы — трем (8—V), а в полупроводниковых сере, селене, теллуре — двум (8—VI). [c.341]

    Таким образом, в зависимости от способа выделения площади первого максимума кривой распределения для координационного числа Пл получаются различные значения. Для жидкого олова по формуле (2.93) находим п, = 8,6, а по формуле (2.94) — щ = 9,7. В кристаллической решетке олова = 4 + 2 4. [c.56]

    В.И. Данилов и И. В. Радченко обнаружили сходство ближнего порядка расположения атомов в жидком олове, висмуте и свинце со структурой этих металлов в твердом состоянии. Анализируя работы П. Дебая, Дж. Принса, О. Кратки, а также результаты собственных исследований, они пришли к заключению, что различные жидкие металлы вблизи температуры плавления сохраняют основные черты ближнего порядка, характерного для кристалла. При повышении температуры структура плотно упакованных металлов изменяется в сторону уменьшения координационного числа Пи а менее плотных металлов — в сторону увеличения 1. Эти положения стали основополагающими при постановке и проведении дальнейших исследований структуры жидкого состояния вещества. [c.171]

    Данные таблицы показывают, что, за исключением олова, во всех остальных веществах координационное число при плавлении увеличивается. Однако коэффициент упаковки существенно отличается от тех значений, которые он должен был бы иметь, если после плавления указанных элементов возникает плотная упаковка атомов. Значение вычисленное по формуле = 7,73/51, для этой группы веществ не совпадает с кратчайшим расстоянием, найденным по кривой распределения атомной плотности. [c.184]


    Олово существует в двух полиморфных модификациях, причем низкотемпературная (a-Sn — серое олово) обладает кристаллической решеткой типа алмаза и полупроводниковыми свойствами, а высокотемпературная ( -Sn — белое олово), хотя и представляет собой металл по физическим свойствам, тем не менее кристаллизуется в малохарактерной для металлов тетрагональной структуре. С химической точки зрения олово ближе примыкает к германию, чем к свинцу, но металлический характер этого элемента выражен более ярко, чем у германия. Единственным типичным металлом в этой подгруппе является свинец. В виде простого вещества он кристаллизуется в плотноупакованной ГЦК структуре с координационным числом 12. В своих соединениях он выступает в основном в качестве катионообразователя. [c.215]

    Физические и химические свойства. В компактном состоянии германий представляет собой хрупкое вещество серебристо-серого цвета с желтоватым отливом и металлическим блеском. При обычных условиях германий кристаллизуется в структуре типа алмаза и обладает ярко выраженными полупроводниковыми свойствами. Однако при высоких давлениях германий претерпевает полиморфные превращения, образуя сначала тетрагональную структуру -олова, а затем и более плотно упакованную ОЦК-структуру. Это сопровождается увеличением координационного числа и появлением металлических свойств. [c.217]

    Атомные (неметаллические) кристаллы с ковалентной связью между атомами. Их особенности. Координационные числа. Нарушение принципа плотной упаковки из-за направленности ковалентных связей. Некоторые особенности соединений с решетками типа сфалерита. Частицами, строящими такие кристаллы, являются атомы. Весь кристалл вещества представляет собой как бы гигантскую молекулу. Типичные представители кристаллических веществ с неполярной ковалентной связью между атомами — алмаз, кристаллические кремний и германий, а-олово, решетки которых рассмотрены выше. Кристаллический бор тоже имеет атомную неметаллическую решетку. [c.131]

    Энтропия плавления олова в два раза меньше, чем германия, но все-таки довольно велика. Можно предполагать, что плавление сопровождается переходом ближнего порядка к ОЦК структуре. По рентгенографическим данным (см. [21]) среднее координационное число атомов олова в жидкой фазе в пределах ошибок опыта равно 8 и остается таким при нагревании жидкости даже на 900 К выше точки плавления. [c.203]

    Следующая, вторая группа (С , 51, Ое, а-5п) элементарных веществ имеет типичную атомную структуру (см. рис. 2, а) с координационным числом 4. Особняком стоят атомно-металлические структуры графита С (см. рис. 2, б) и белого олова р-5п, имеющего искаженную алмазную структуру (тетрагональная, объемно-центрированная) [18, 19]. В эту же группу, по-видимому, следует включить элементарный бор, имеющий особую атомную структуру (рис. 27). [c.59]

    По внутренней структуре комплексного соединения. а) По числу ядер, составляющих комплекс, различают моно- и поли-ядерные комплексные соединения. Пример двухъядерного комплекса — это [(NH,-5)5 r OH r(NH3)5] ls, в котором два иона хрома (комплексообразователя) связаны посредством мостиковой группы ОН. В качестве мостиковых могут функционировать частицы, обладающие неподеленными электронными парами ионы F, С1, 02", S2, S02", NH2, NH" и др. Полиядерные комплексы, в которых мостики образованы гидроксильными группами, называются оловыми соединениями. Структурно мостиковая группа ОН отличается от гидроксильной группы в одноядерных комплексах. Координационное число кислорода в оловом мостике равно трем, а в ОН-группе одноядерных комплексов — двум. [c.107]

    Олово — серебристо-белый легкоплавкий металл при обычных условиях. Устойчивая при комнатной температуре тетрагональная /3-модификация олова при 13,2°С в равновесных условиях переходит в алмазоподобную а-модификацию. Однако с заметной скоростью это превращение происходит при более низких температурах порядка -30...-40 С. В ходе этого превращения происходит значительное увеличение удельного объема (на 25,6%), что обусловлено значительным уменьшением координационного числа при переходе от плотноупакованной к рыхлой алмазоподобной структуре. Этот фазовый переход инициируется и ускоряется при внесении затравки о-олова. При соприкосновении белого олова с серым при низких температурах процесс полиморфного превращения протекает чрезвычайно быстро. Оловянные предметы при этом рассыпаются в порошок. Это явление получило название "оловянной чумы". [c.381]

    Из веществ с общей формулой МХг двуокись кремния (отношение радиусов 0,29) образует кристаллы с тетраэдрической координацией четырех ионов кислорода вокруг каждого иона кремния фторид магния (отношение радиусов 0,48) и двуокись олова (отношение радиусов 0,51) образуют кристаллы с октаэдрической координацией шести анионов вокруг каждого катиона (структура рутила, рис. 18.2), а фторид кальция (отношение радиусов 0,73) образует кристаллы с кубической координацией восьми анионов вокруг каждого катиона (структура флюорита, рис. 18.3). Координационное число увеличивается по мере возрастания отношения радиусов, как показано на рис. 18.1. [c.515]


    IV группы, начиная с кремния, появляются незаполненные орбиты (например, у кремния 1-, а у гелия или олова /-орбиты). Это создает принципиальное различие в их поведении по сравнению с углеродом. Незаполненные орбиты могут использоваться для образования новых дополнительных связей. Сближение орбит облегчает этот процесс (см. табл. 9.17), ковалентный радиус при переходе от углерода к кремнию меняется резко, а далее остается почти без изменений. Известно много случаев образования дополнительных 0-связей за счет ( -орбит и образование пяти- и шестивалентных соединений кремния, германия и олова. Координационное число этих элементов не превышает 6. Хотя у них имеется пять -орбит, к связыванию оказываются способными только два, вероятно, по стерическим причинам. Наиболее известным примером шестивалентного кремния является фторсиликатный ион31Гв . Германий и олово в своих галогенидах являются сильными акцепторами и образуют многочисленные аддукты со спиртами, эфирами, аминами [63]. [c.318]

    Для атома теллура, имеющего шесть валентных электронов, координационное число шесть реализуется уже в октаэдрической молекуле ТеРб- Реализация этого же координационного числа у атома сурьмы (пять электронов) возможна лишь при объединении октаэдров в цепной полимер состава Sbp5. Для олова (четыре электрона) это возможно лишь при образовании слоистого полимера состава Snp4 (см. рис. 177). И наконец, для индия (три электрона) — при образовании трехмерного полимера состава InFg (см. рис. 71). [c.114]

    В периодической таблице, показанной на рис. 14-8, кристаллы элементарных веществ подразделяются на металлические, ковалентные каркасные и молекулярные. В табл. 14-1 устанавливается зависимость между координационным числом атомов в кристалле и структурой элементарных твердых веществ. Большинство элементов кристаллизуются с образованием какой-либо металлической структуры, в которой каждый атом имеет высокое координационное число. К металлам отнесены и такие элементы, как олово и висмут, кристаллизующиеся в структуры со сравнительно низким атомным координационным числом, но все же обладающие ярко выраженными металлическими свойствами. Светлоокрашенная область периодической таблицы включает элементы со свойствами, промежуточными между металлами и неметаллами. Хотя германий кристаллизуется в алмазоподобную структуру, в которой координационное число каждого атома равно только 4, по некоторым из своих свойстг он напоминает металлы. [c.605]

    Углерод и кремний относятся к неметаялическим элементам, олово и свинец —металлы, а германий — полуметалл. Максимальное ЧИСЛО ковалентных связей (координационное число) у атома углерода — четыре, у атомоа остальных элементов — шесть. [c.554]

    Известны комплексы четырехвалентных элементов этой группы. Кроме того, описаны производные Sn(II) и РЬ(П). Соединения четырехвалентных элементов с координационным числом 6 имеют октаэдрическое строение. Комплексы двухвалентного свинца и олова, характеризующиеся аналитическим координационным числом 4 в действительности в твердом состоянии представляют собой сложные полимерные структуры с октаэдрической координацией около иона металла. Сведения о плоской структуре комплексов Sn(II) и РЬ(П) неполны и нуждаются в дальнейшем подтверждении. К соединениям с аномальными координационными числами относятся Na( 5H5NH)2[Sn(N S) ], [c.203]

    Для олова(И) характерно координационное число (КЧ), равное 3, например в комплексах [5пС1з] и [5п(ОН)з] . Сравните (по методу валентных связей) геометрическую форму этих комплексов и соответствующих комплексов с КЧ = 4. Какие из них (с КЧ, равным 3 или 4) более устойчивы в водном растворе  [c.83]

    В частности, по ряду С—РЬ уменьшаются энергии связей Э—Э 83 (С—С), 53 (Si—Si), 45 (Ge—Ge ), 37 ккал/моль (Sn-Sn). С другой стороны, по тому же ряду увеличиваются координационные числа элементов. Например, у фтористых соединений максимальное координационное число углерода составляет четыре (в F4)i кремния и германия — шесть (в солях НаЭР ), олова и свинца — восемь (в соля Н4Эр8). По отношению к более объемистым галоидам максимальное координационное число кремния (и углерода) не превышает четырех, у Ge оно возрастает до шести только для хлора, а у Sn и РЬ — даже для иода. Как уменьшение устойчивости связей [c.642]

    Определение координационных чисел. В случае аморфного селена площадь первого пика на кривой распределения при = 2,32 А равна двум, а второго при = 3,7 А — восьми, что соответствует числу атомов на данных расстояниях. Решетка кристаллического селена состоит из зигзагообразных винтовых цепочек, каждый атом в которых ковалентно связан с двумя ближайшими атомами, а цепочки между собой — силами Ван-дер-Ваальса. Расстояние между ближайшими атомами в цепочке равно 2,34 А, а между атомами соседних цепочек — приблизительно 3,8 А. Следовательно, в аморфном селене сохраняется ближний порядок такой же, как в кристаллическом. Неизолированность первого и последующих пиков на кривой распределения для жидкого олова затрудняет измерение площади под ними. Количественно можно интерпретировать только первый максимум функции 4я/ зт,( ). вычислить только первое координационное число. При этом площадь под максимумом выделяют двумя способами симметрично, т. е. как бы зеркальным отображением левой ветви кривой относительно перпендикуляра, опущенного из вершины максимума на ось Я, и несимметрично — продолжением ниспадающей правой ветви кривой до пересечения ее с осью абсцисс. [c.55]

    При образовании гомоатомных соединений (простых веществ) все эффекты, связанные с разностью электроотрицательностей взаимодействующих атомов, исключаются. Поэтому в простых веществах не реализуются полярные, а тем более преимущественно ионные связи. Следовательно, в простых веществах осуществляется лишь металлическая и ковалентная связь. Следует при этом учесть и возможность возникновения дополнительного ван-дер-ваальсов-ского взаимодействия. Преобладание вклада металлической связи приводит к металлическим свойствам простого вещества, а неметаллические свойства обусловлены преимущественно ковалентным взаимодействием. Для образования ковалентной связи взаимодействующие атомы должны обладать достаточным количеством валентных электронов. При дефиците валентных электронов осуществляется коллективное электронно-атомное взаимодействие, приводящее к возникновению металлической связи. На этой основе в периодической системе можно провести вертикальную границу между элементами П1А- и 1УА-групп, слева от которой располагаются элементы с дефицитом валентных электронов, а справа — с избытком. Эта вертикаль называется границей Цинтля Ее положение в периодической системе обусловлено тем, что в соответствии с современными представлениями о механизме образования ковалентной связи особой устойчивостью обладает полностью завершенная октетная электронная 5 /гр -конфигурация, свойственная благородным газам. Поэтому для реализации ковалентного взаимодействия при образовании простых веществ необходимо, чтобы каждый атом пмел не менее четырех электронов. В этом случае возможно возникгювение четырех ковалентных связей (5/) -гибридизация ), что и реализуется у элементов 1УА-группы (решетка типа алмаза у углерода, кремния, германия и а-олова с координационным числом 4). Если атом имеет 5 валентных электронов (УА-группа), то до завершения октета ему необходимо 3 электрона. Поэтому он может иметь лишь три ковалентные связи с партнерами (к. ч. 3). В этом случае кристалл образован гофрированными сетками, которые связаны между собой более слабыми силами. Получается слоистая структура, в которой расстояние между атомами, принадлежащими одному слою, намного меньше, чем между атомами различных слоев (черный фосфор, мышьяк, сурьма)  [c.29]

    Характеристика элементов IVA-группы. К IVA-rpynne элементов, помимо типических, относятся элементы подгруппы германия Ge, Sn и Pb. Их валентная электронная конфигурация (ns np в невозбужденном состоянии) обусловливает возможность проявления свойств и катионо- и анионообразователей. Кроме того, эти элементы непосредственно примыкают к границе Цинтля справа и число валентных электронов достаточно для образования структур с ковалентной связью у соответствующих простых веществ с координационными числами согласно правилу Юм-Розери 8—N. Действительно, для гомоатомных соединений (кроме свинца и -олова) характерна кристаллическая решетка типа алмаза с координационным числом 4. Однако преимущественно ковалентная связь и кристаллах соединений в действительности реализуется далеко не всегда. Причиной этого является вторая особенность IVA-группы, заключающаяся в том, что здесь наиболее рельефно прослеживается изменение свойств от типично неметаллических (С) до металлических (РЬ). Поэтому тяжелые представители этой группы (РЬ, Sn), т. е. элементы с большой атомной массой, характеризуются плотно-упакованными структурами в свободном состоянии. [c.214]

    Олово — серебристо-белый легкоплавкий металл при обычных условиях. Устойчивая при комнатной температуре тетрагональная ( (-модификация олова (белое олово) при 13,2 С в равновесных условиях переходит в алмазоподобную а-модификацию (серое олово). Однако с заметной скоростью это превращение протекает при более низких температурах порядка —30. . . —40 °С. В ходе этого превращения происходит значительное увеличение удельного объема (на 25,6%), что обусловлено значительным yMeHbUjenneM координационного числа при переходе от плотноупакованной к рыхлой алмазоподобной структуре. Этот фазовый переход инициируется и ускоряется при внесении затравки а-олова. При соприкосновении белого олова с серым при низких температурах процесс полиморфного превращения протекает чрезвычайно быстро. Оловянные предметы при этом рассыпаются в порошок. Это явление получило название оловянной чумы . Резкое ускорение фазового перехода в присутствии затравки аналогично бурной кристаллизации пересыщенного раствора, находящегося в метастабильном состоянии. [c.217]

    Соединения с другими неметаллами. Халькогениды элементов подгруппы германия, как и оксиды, образуют 2 ряда монохалькогениды ЭХ и дихалькогениды ЭХ . Низшие халькогениды известны для всех элементов и халькогенов. Все монохалькогениды элементов можно получить как непосредственным взаимодействием компонентов при нагревании, так и пропусканием сероводорода через водные растворы, содержаш,ие ионы +. Дисульфиды германия и олова получают непосредственным взаимодействием компонентов при повышенном давлении пара серы. Все монохалькогениды являются типичными полупроводниками, что свидетельствует о преобладающем вкладе ковалентной составляющей в химическую связь. Кроме того, надо учитывать определенный ионный вклад, обусловленный различием в электроотрицательности, а также нарастание металличности с увеличением порядкового номера компонентов. Сульфиды и селениды германия и олова кристаллизуются в орто-ромбической структуре, а при переходе к соответствующим теллури-дам происходит уплотнение структуры с повышением координационного числа до 6 (структура типа Na l). [c.225]

    Вещество будет обладать полупроводниковыми свойствами, если в данном состоянии обеспечиваются условия образования насыщенных парноэлектронных связей хотя бы у одного из компонентов (у анионообразователя). В элементарных полупроводниках ковалентная связь образуется заполнением 5- и /з-орбиталей всех атомов. Эти полупроводники подчиняются так называемому правилу октета 8—М, согласно которому атом в ковалентном кристалле имеет 8—N ближайших соседей (уУ — номер группы Периодической системы). Так, кремний, германий и а-олово имеют координационное число 4 (Л = 4), для полупроводниковых модификаций фосфора, [c.318]

    На рис. 45 изображены зависимости от давления удельных объемов сосуществующих жидкого и твердого цезия. При относительно малых давлениях, когда плавление происходит почти без изменения координационного числа, объем жидкости немного больше объема твердой фазы. С повышением давления положение меняется. При давлениях 2,0—4,7 ГПа рост объема жидкости за счет вакансий подавляется уплотнением упаковки атомов. После превращения sH в плотноупако-ванный sIV, т. е. при давлениях выше 4,72 Гпа, изменение объема при плавлении определяется, вероятно, лишь ростом концентрации вакансий. Здесь удельный объем жидкой фазы существенно превышает удельный объем кристаллов sIV. Заметим все же, что при еще более высоких давлениях в принципе не исключена возможность возникновения менее плотноупако-ванных структур. Теория этого вопроса отсутствует. Экспериментально подобные переходы наблюдались, например, у таллия, олова и висмута. [c.181]

    Исследовано 22 жидких металла. У 16 металлов вблизи точки плавления г находится в интервале от 8 до 9 (металлы подгруппы лития, алюминий, галлий, индий, таллий, железо, кадмий, ртуть, висмут, сурьма, германий, олово). Надо полагать, что в этих простых жидкостях относительно широко распространены фрагменты ОЦК структуры, В пяти случаях (медь, серебро, золото, свинец, цинк) 2 = 11, В этих жидких металлах, видимо, преобладают фрагменты плотноупакованных структур. Если твердая фаза имеет ОЦК структуру, то после плавления координационное число, как правило, сохраняется близким к 8 и нередко остается почти без изменений в больиюм интервале температур, достигающем несколько сот градусов (щелочные металлы, алюминий). Когда твердая фаза в точке плавления не имеет ОЦК структуры, во многих случаях после плавления г 8, Следовательно, строение жидкостей и в этих случаях можно охарактеризовать как ОЦК решетку, содержащую столь большое число дефектов, что дальняя упорядоченность атомов отсутствует. Таковы жидкие инертные газы, олово, алюминий, никель, висмут, германий, сурьма, галлий, индий, кадмий, ртуть. [c.269]

    По природе связи твердые тела могут быть разбиты на четыре группы — ионные, атомные, молекулярные и металлические рещетки. Гомеополярные связи между атомами в атомных рещетках определяют координационное число (число валентностей) и расположение соседних атомов в соответствии с направлением валентностей. В алмазе атомы углерода имеют 4о-связи. Эти связи направлены к вершинам тетраэдра, в центре которого находится атом углерода. Подобное строение имеют и другие элементы четвертой группы периодической системы (германий, кремний, серое олово). [c.342]

    Соединения германия (П), олова (П) и свинца (П). Координационные числа элементов подгруппы германия в степени окисления +2 более разнообразны, чем в степени окисления +4, и равны 3, 4, 5 и 6. У атомов Э(П) имеется несвязывающая электронная пара, поэтому координационным числам 3, 4, 5, 6 отвечают тригональная пирамида (тип АВзЕ, см. рис. 51, б), искаженный тетраэдр (тип АВ4Е, см. рис 51, < ), тетрагональная пирамида (тип АВ5Е, см. рис. 51, ) и искаженный октаэдр (тип АВеЕ). [c.464]

    ФС Все монохалькогениды являются типичными полупроводниками, что свидетельствует о преобладающем вкладе ковалентной составляющей в химическую связь. Кроме того надо учитывать определенный ионный вклад, обусловленный различием в электроотрицательности, а также нарастание металличности с увеличением порядкового номера компонентов. Сульфиды и селениды олова кристаллизуются в орторомбической структуре, а при переходе к теллуриду олова происходит уплотнение структуры с повышением координационного числа до 6 (структура типа МаС1). [c.78]


Смотреть страницы где упоминается термин Олово координационное число: [c.428]    [c.147]    [c.184]    [c.147]    [c.287]    [c.318]    [c.242]    [c.379]    [c.153]    [c.358]    [c.358]    [c.132]    [c.462]    [c.1540]    [c.75]   
Основы общей химии Том 2 (1967) -- [ c.148 ]




ПОИСК





Смотрите так же термины и статьи:

Координационное числ

Координационные по координационному числу

Число координационное



© 2025 chem21.info Реклама на сайте