Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Пластификаторы текучесть

    Из высокоэластического состояния при достижении полимер переходит в вязкотекучее, которое характеризуется необратимыми (пластическими) деформациями. Текучесть (пластичность) полимеров тем выше, чем ниже степень полимеризации, чем выше температура и чем больше введено в полимер низкомолекулярного вещества (пластификатора). Все эти факторы уменьшают вязкость полимера. На температуру текучести сильное влияние оказывает полярность макромолекул. Межмолекулярное взаимодействие повышает вязкость полярных полимеров иногда настолько, что у некоторых из них не осуществляется вязкотекучее состояние, так как температура их разложения оказывается более низкой, чем температура текучести. [c.398]


    ВЛИЯНИЕ ПЛАСТИФИКАТОРОВ НА ТЕМПЕРАТУРУ СТЕКЛОВАНИЯ И ТЕКУЧЕСТЬ ПОЛИМЕРОВ [c.435]

    Пластификация полимеров. Для уменьшения хрупкости полимера в данных условиях работы и для повышения его высокоэластичности часто прибегают к искусственной пластификации его. Пластификация полимера характеризуется, в частности, понижением его температуры стеклования и температуры текучести. Этого можно достичь двумя путями вводя в состав полимера специальные пластификаторы — некоторые низкомолекулярные высококипя-щие жидкости, или изменяя состав самого полимера методами сополимеризации .  [c.589]

    И температура текучести полимера. Присутствие пластификатора одновременно способствует возрастанию хладотекучести полимера при температурах ниже температур . его стеклования и повы-1 ( нию эластичности. [c.48]

    Поэтому снижение вязкости и Гст при введении пластификатора связано только с изменением геометрии расположения макромолекул в системе полимер — пластификатор. Текучесть системы повышается не только потому, что наряду с громоздкими макромолекулами имеются легко подвижные молекулы 200 [c.200]

    При пластикации в присутствии растворителя наблюдается значительное изменение физико-механических свойств полимеров понижаются температуры стеклования и текучести, снижается хрупкость, повышается морозостойкость и т. п. Такое изменение свойств полимеров называется пластификацией, а используемый при этом высококипящий растворитель называется пластификатором. Для каучуков в качестве пластификаторов чаще всего используют бутилолеат, дибутилфталат, диоктилфталат, три-бутилфосфат, трикрезилфосфат и другие сложные эфиры. Применение пластификаторов позволяет вести пластикацию при более низкой температуре, что снижает расход энергии, затрачиваемой на проведение этого процесса. [c.299]

    На.личие в системе гибких молекул вносит новый элемент — возникновение запаздывающей упругости (высокая эластичность). Концентрация введенного пластификатора влияет в этом случае следующим образом. При некоторой концентрации пластификатора жесткость полимера резко понижается вследствие перехода в высокоэластическое состояние (температура испытания ниже Тс полимера). По мере увеличения концентрации пластификатора текучесть полимера начинается при более низких температурах. [c.158]

    Кроме полимеров в состав пластмасс могут входить пластификаторы, стабилизаторы, красители и наполнители. Пластификаторы, например диоктилфталат, дибутилсебацинат, хлорированный парафин, снижают температуру стеклования и повышают текучесть полимера. Антиоксиданты замедляют деструкцию полимеров. Наполнители улучшают физико-механические свойства полимеров. В качестве наполнителей применяют порошки (графит, сажа, мел, металл и т. д.), бумагу, ткань. Особую группу пластмасс составляют композиты. [c.364]


    Молекулярный вес. Величиной молекулярного веса поливинилхлорида определяются в значительной мере физико-механические свойства материалов, скорость взаимодействия с пластификаторами, текучесть расплава и многие другие свойства. [c.178]

    По л и в и н и л а ц ет а т — бесцветный прозрачный полимер, обладающий высокой светостойкостью. Полимер растворим в спирте, ацетоне и сложных эфирах, нерастворим в бензине, керосине, маслах. Поливинилацетат отличается высокой адгезией к минеральному и органическому стеклу, к металлам, к оже и поэтому применяется в качестве клеящего и пленкообразующего компонента в производстве безосколочных или морозостойких стекол, клеев, лаковых покрытий. Для повышения эластичности поливинилацетата в полимер вводят некоторое количество пластификатора. Низкая температура стеклования поливинилацетата (около 28°) и низкая температура перехода ь текучее состояние (120°), заметная текучесть под нагрузкой даже при комнатной температуре обусловливают невозможность использования этсго полимера в производстве пластмасс (без модификации его свойств). [c.303]

    Введение большого числа полярных групп резко увеличивает вязкость (т]й 10 Па-с), сильно снижая пластичность и текучесть. В практике для увеличения пластичности в линейные полимеры вводят специальные вещества — п л а с т и ф и к а т о-р ы. Последние внедряются между макромолекулами или блоками (пачками) и раздвигают их, ослабляя межмолекулярные силы и снижая Тд и Tf. Пластификаторы, взаимодействуя с макромолекулами, как бы сольватируют их. Поэтому для неполярных полимеров применяют неполярные пластификаторы типа четыреххлористого углерода, для полярных — полярные, например дибутилфталат. В настоящее время используют десятки тысяч различных пластификаторов. [c.328]

    Свойства полимеров изменяются в широких пределах при добавлении пластификаторов или веществ, частично или полностью растворяющих полимер и растворяющихся в нем. Они расклинивают макромолекулы полимера, снижая энергию межмолекулярного взаимодействия (табл. 15.11), поэтому уменьшается время релаксации и снижаются температуры стеклования и текучести. [c.499]

    Подобная картина в изменении текучести при перемешивании наблюдается и при введении аналогичным образом замедлителя (рис. 99, б) с той лишь разницей, что винная кислота, являясь хорошим пластификатором, обеспечивает более низкие значения эффективной вязкости. [c.202]

    Для некоторых целой требуется смягчение полиэтилена в таких случаях к нему добавляют единственно применимый пластификатор, который практически почти пе ухудшает его исключительно хороших электрических свойств, оппанол В в различных количествах, также являюш,п]1ся высоко-мoJгeкyляpным углеводородом. Наоборот, добавка полиэтилена г оппаполу В повышает механическую ирочность материала и улучшает текучесть на холоду. [c.574]

    Полисилоксановые жидкости растворяют все существующие пластификаторы синтетических каучуков, поэтому уплотнительные детали, изготовленные из этих материалов, становятся хрупкими, в )езультате агрегаты гидравлической системы теряют герметичность. 1олисилоксановые жидкости обладают высокой текучестью, ввиду чего усложняется герметизация агрегатов. Синтетические полисилоксановые жидкости обладают плохими смазывающими свойствами. Для повышения смазывающей способности синтетических жидкостей в, них добавляют присадки и добавки минеральных масел. [c.217]

    Эти данные показывают, что путем добавления пластификаторов температура стеклования полимера может быть понижена очень сильно. Однако к полимеру не следует добавлять слишком большие количества пластификаторов, так как это вызывает резкое понижение температуры текучести и сужение температурного интервала высоко э л а ст ич 5 юст н. [c.437]

    При введении такого пластификатора в жесткоцепные полимеры снижается только температура текучести. Высокоэластическое состояние не возникает. [c.263]

    Пластифицирование битумов способствует увеличению расстояния между частицами дисперсной фазы, уменьшению размеров крупных агрегатов и увеличению их числа, а также более равномерному распределению коллоидно-дисперсной фазы системы. Введенные в битум пластификаторы оказывают влияние на прочность, эластичность, хрупкость и теплостойкость битума, на расширение температурного интервала эластично-пластичного состояния в пределах требуемой текучести и на другие свойства битума. В колонном аппарате в отличие от куба-окислителя периодического действия протекает [c.230]

    Молекулярный вес поливинилхлорида является весьма важной характеристикой, определяющей наряду с другими показателями почти все свойства материалов на основе этого полимера. Величиной молекулярного веса определяются в значительной степени физико-механические свойства полимерных материалов на основе яоливинилхлорида (как жестких, так и пластифицированных), совместимость ПВХ с пластификаторами, скорость его взаимодействия с пластификаторами, текучесть расплава и многие другие свойства. [c.228]

    Хладотекучесть СКД (см. табл. 3) ниже, чем у СКДЛ, что связано с некоторой, хотя и очень небольшой, его разветвленностью. Установлено также [68], что хладотекучесть СКД уменьшается с увеличением коэффициента полидисперсности (при той же средней М). При сопоставлении каучуков СКД с узким и широким ММР обнаруживается инверсия текучести при переходе от малых напряжений сдвига (хладотекучесть) к высоким (вальцуемость). Полимеры с широким ММР обладают за счет высокомолекулярных фракций определенной каркасностью , которая препятствует течению при малых напряжениях сдвига. В то же время присутствующие в них низкомолекулярные фракции являются своеобразным пластификатором, облегчающим течение при высоких напряжениях сдвига. Подобная инверсия была подтверждена экспериментально [68] при исследовании текучести каучуков с различным ММР (рис. 3). [c.190]


    Обычно полимеры обладают способностью поглощать некоторые жидкости (с которыми совместим данный полимер). При этом происходит процесс набухания полимера, сопровождающийся увеличением его объема. Вследствие проникания молекул жидкости между звеньями цепей полимера увеличиваются расстояния и ослабляются связи между ними. Это и приводит к понижению температуры стеклования, уменьщению вязкости и к другим эффектам, обусловленным ослаблением связей между молеку. лами однако одновременно снижается и температура текучести. В результате температурный интервал, отвечающий области высокоэластичного состояния, смещается в область более низких температур. На рис. 216 показано влияние содержания трибутирина (сложного эфира глицерина и масляной кислоты) в поливинилхлориде на эти температурные параметры, а на рис. 217 представлено влияние пластификатора на термомеханические кривые, подобные рассмотренным ранее (см. рис. 202). При повышении содержания пластификатора (кривые 2 и 3) температуры стеклования и текучести понижаются, при достаточной концентрации пластификатора постепенно сближаются, причем область существования полимера в высокоэластичпом состоянии уменьшается. Эта область должна ы д [c.590]

    При пластификации полимера используется его способность поглощать некоторые жидкости. Поглощение пластификатора связано с набуханием полимера, приводящим к увеличению его объема. Молекулы жидкости, проникая между звеньями цепей полимера, увеличивают расстояния и ослабляют связи между ними. Это приводит к понижению температуры стеклования, уменьшению вязкости и к другим эффектам, обусловленным ослаблением связей между молекулами однако одновременно снижается и температура текучести. В результате температурный интервал, отвечающий высокоэластичному состоянию, смещается в область более низких температур. На рис. 52 показано влияние содержания трибутирина (сложного эфира глицерина и масляной кислоты) в поливинилхлориде на эти температурные [c.221]

    Пластичное (вязко-текучее) состояние полимеров. Температура текучести, как и температура стеклования, тоже не представляет собой строго определенной константы для данного полимера, так как и пластичность, и текучесть приобретаются данным полимером по мере повышения температуры довольно постепенно и сильно зависят от харак1ера действующей силы и других факторов. Кроме того, эти свойства сильно зависят также от степени полимеризации и от содержания в полимере других веществ, в частности специально вводимых в него пластификаторов. [c.591]

    Если эти ответвления расположены редко, пе создается пятствий для кристаллизации отдельных сегментов макромолекул, и кристаллические образования имеют такие же размеры и форму, как и в гомополимерах полиамида. Поэтому температура плавления привитого сополимера мало отличается от температуры плавления соответствующего гомополиамида. Полиоксиэтиленовые боков1.1е ответвления выполняют функцию пластификатора, способствуя увеличению текучести расплава, повышению упругости полимера, придавая волокну большую гибкость и лучшую морозостойкость. Волокна и пленки из привитого полиамида сохраняют упругость и при —7Сг (полиамид 6 и полиамид 6-6 начинают утрачивать упругость при температуре н(i кoJ[ькo ниже О ). [c.543]

    Эластичность полимера снижают либо повышением температуры переработки, либо снижением молекулярной массы, либо рецептурными факторами, например введением неэластичного (порошок мела) наполнителя, который снижает эластичность системы в целом. Температуру текучести можно также существенно понизить введением пластификатора. Пластифицированный 1юлимер — это [c.170]

    Введенные в полимер пластификаторы оказывают влияние па все его физико-механические свотетва (прочность, эластичность, хрупкость, диэлектрические пoтep r, температуру стекловаиия и текучести и т. Д.). [c.435]

    Изучением действия пластификаторов на свойства полимеров занимались многие исследователи, Однако результаты этих работ <гасто трудно и пOv ьзoвaть, так как выводы о действии пластификаторов делались на основании датшх примитивных исследований (например, измерялось число перегибов пленки до ее разрушения). Строгие научные выводы стали возможны лишь после разработки методов определения температур стеклования и текучести. [c.435]

    Изменение Гс и Гт в зависимости от концентрации введенного Пластификатора представлено на рис, 198. Из рисунка следует, что при небольшом содержании пластификатора температура стеклования понижается более резко, чем температура текучести, н разность 7и возрастает с дальнейшим увеличением содержания лласт11фикатора более резко понижается температура текучести, поэтому разность Г-г—Т , уменьшается. [c.437]

    Пластификаторы, относящиеся ко второй группе, значительно снижают температуру текучести в результате уменьшения сил межмолекулярного взаимодействия. Одновременно несколько снижается и температура стеклования. Следовательно, у гнбкоиепных полимеров происходит так же, как и в первом [c.263]

    Как видно из рис. 50, введение аминов ОДА снижает наибольшую пластическую вязкость, а также статический предел текучести всех модельных систем. Это особенно ярко проявляется на моделях Ai и. Мз, имитирующих I и П1 тип дисперсной структуры. Для этих систем снижение вязкости и предела текучести наблюдается при введении малых количеств (0,3—0,5%) ОДА и далее продолжается во всем диапазоне исследуемых концентраций (до 2—2,5%). Следует отметить, что при введении около 1,5—2,0% ОДА предел текучести становится очень малым, что свидетельствует о практическом исчезновении твердообразных свойств системы. Для системы Мг (И тип дисперсной структуры) действие ОДА проявляется менее заметно и лишь при малых концентрациях добавки (0,5%). Дальнейшее увеличение ее количества практически не изменяет вязкости системы. Следовательно, при наличии коагуляционной структурной сетки из асфальтенов Му и М ) добавка, адсорбируясь на лиофоб-кых участках их поверхности с блокировкой контактов, способствует стабилизации системы. В моделях М2, где отсутствует коагуляционный каркас из асфальтенов, адсорбция добавки приводит к дезагрегации и исчезновению отдельных малочисленных образований из асфальтенов. Растворение ОДА в углеводородной среде приводит также к общей пластификации системы, сопровождающейся уменьшением числа асфальтенов в единице объема. Пластифицирующее воздействие на битумы различных структурных типов оказывает добавка высших карбоновых кислот — госсиполовая смола, снижающая пластическую вязкость и статический предел текучести. Пластифицирующий эффект увеличивается с повышением количества ПАВ в битуме, что наблюдается для всех модельных систем. Следует, однако, отметить, что в случае дисперсных структур М и Мз введение добавки ГС до 2% практически не изменяет значений пределов текучести, тогда как наибольшая пластическая вязкость при этом уменьшается. Это указывает на нарушение иространствен-ной сетки асфальтенов пластификатором без полного разрушения каркаса. Дальнейшее повышение концентрации ГС способствует превращению систем М] и ТИз в структурированную и далее истинную жидкость. [c.211]


Смотреть страницы где упоминается термин Пластификаторы текучесть: [c.83]    [c.344]    [c.76]    [c.391]    [c.171]    [c.360]    [c.435]    [c.436]    [c.439]    [c.52]    [c.113]    [c.260]    [c.358]    [c.424]    [c.446]    [c.341]   
Физико-химия полимеров 1978 (1978) -- [ c.451 , c.455 ]




ПОИСК





Смотрите так же термины и статьи:

Пластификаторы

Текучесть



© 2025 chem21.info Реклама на сайте