Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Изомерия в комплексных соединениях ионная

    Ионизационная изомерия (метамерия) связана с различным распределением ионов между внешней и внутренней сфе-)ами комплексного соединения. Например, метамеры Со(ЫНз)5Вг]804 и [Со(ЫНз)5804]Вг [Р1(ЫНз)4504](0Н2) и Р1 ЫНз)4(С)Н)2]504. [c.375]

    Изомерия, обусловленная неодинаковым распределением молекул воды и внешнесферных ионов между внутренней и внешней сферами комплексных соединений, называется гидратной. [c.560]


    Некоторые виды изомерии комплексных соединений не связаны с изомерией самого комплексного иона. Их классифицируют следующим образом  [c.151]

    Ионизационная изомерия — неодинаковое распределение кислотных остатков (ионов) между внутренней и внешней сферами комплексного соединения. Например  [c.202]

    Комплексные соединения в растворе электролитов. Изомерия. Комплексные соединения подразделяют на электролиты и неэлектролиты. Электролиты при растворении в воде (или ином растворителе) взаимодействуют с ней, диссоциируя на ионы. Неэлектролиты электролитической диссоциации не подвергаются. [c.269]

    Ионная (ионизационная) изомерия — разное распределение ионов между внутренней и внешней сферами комплексного соединения  [c.194]

    Изучая явления изомерии комплексных соединений с координационным числом 6, Вернер пришел к выводу, что в этом случав лиганды должны быть симметрично расположены вокруг центрального иона, образуя фигуру правильного октаэдра (рис. 158). Если все координированные группы одинаковы, как показано на рисунке,, то, конечно, перестановка одной группы на место другой не изменит [c.583]

    Изомерией называется способность веществ давать два или большее число соединений одинакового состава, но отличающихся по свойствам. Это явление, широко известное в химии неравновесных комплексных соединений, обусловлено различным расположением аддендов вокруг центрального иона, т. е. строением внутренней сферы. Ясно, что основным условием для проявления изомерии является прочно сть комплексов, их неравновесный характер, обусловленный в значительной мере ковалентностью координационных связей.  [c.42]

    Координационная изомерия. Наблюдается у комплексных соединений, которые содержат в своем составе несколько комплексных ионов. Она связана с различным распределением лигандов во внутренних координационных сферах этих ионов. Так, два координационных изомера [Со(ЫНз)( ] [Сг (СМ) ] и [Со(СЫ)в] [Сг(ЫНз)в1 могут быть получены следующими способами  [c.240]

    Исходным материалом Вернеру служили состав комплексных соединений, число изомеров, общее число ионов, образующихся при диссоциации соли в растворе, определяемое по его электрической проводимости, а также число простых ионов, не входящих в комплекс, например ионов СГ, легко осаждаемых ионами серебра. [c.64]

    Изучая явления изомерии комплексных соединений с коорлинацнонным числом 6, Вернер пришел к выводу, что в этом случае лиганды должны быть симметрично расположены вокруг центрального иона, образуя фигуру правильного октаэдра (рис. 157). Если все координированные группы одинаковы, как показано на рисунке, то, конечно, перестановка одной группы на место другой не изменит структуры комплекса. Но если группы не одинаковы, то возможно различное их расположение, вследствие чего могут образоваться изомеры. И действительно, опыт показывает, что, иапример, соединение [Pt(NHз)г l4] (где координационное [c.592]


    Изомерия комплексных соединений мало отличается от изомерии органических. Здесь также встречаются цис- и транс-изомерия, оптическая зеркальная изомерия, изомерия лигандов. К специфическим изомерам, характерным только для координационных соединений, относятся ионные изомеры, в которых ионные лиганды перераспределяются между внутренней и внешней сферами, например [Со (ЫНз)бВг] SO4 и [Со(КНз)в804] Вг, и координационные изомеры, в которых комплексообра-зователи катиона и аниона меняются местами, например [Со (ЫНз)в] [Сг ( N)e] и [Сг (ЫНз)в] [Со ( N)e]. Свойства таких изомеров могут быть существенно различными. [c.266]

    Соединения построены асимметрично адденды образуют цепь, которая содержит разноименно заряженные ионы. Различия в свойствах двух хлорогрупп в. соединении [(NHз)4 l2Pt] С12 объясняются тем, что одна пара С1 связана с группой ЫНг, а другая —с ЫН4. Атомы N оказываются различными по своей природе. Вопрос об изомерии комплексных соединений еще не ставился. Теория не дает возможности представить строение соединений, содержащих нечетнор количество молекул аммиака. Вследствие этого формулы соединений с нечетным числом молекул аммиака удваивались, например, строение хлоропентамминкобальто(1И)хло-рнда представлялось следующим образом  [c.19]

    Ионизационная изомерия комплексных соединений заключается в различном распределении ионов между внутренней и внешней сферами. Следствие этого проявляется в различном характере диссоциации комплексных соединений на ионы. Так, вещество состава Со304Вг(ЫНз)5 существует в виде двух изомеров один с нитратом серебра дает осадок Ад2504, другой — [c.228]

    Бывают и другие виды изомерии комплексных соединений. Так, ион, находящийся в одной координационной сфере, например во внешней, может обменяться местом с ионом, который помещается во внутренней сфере, при этом получатся два ионных нэомера. Примером служат соединения СО(ЫНз)5Х]У и [Со(ЫНз)5У]Х. Это явление называется нонизацнонной изомерией. К нему близко примыкает и гидратная изомерия, для которой характерен переход молекул воды из одной сферы в другую. Известны гидратные изомеры комплексов хрома [Сг(Н20)б]С1з, окрашенный в светло-фнолетовый цвет, и [Сг(Н20)4СЬ]С1 зеленого цвета. [c.222]

    Ионизационная изомерия комплексных соединений заключается в различном распределении ионов между внутренней и внешней сфера.ми. Следствие этого проявляется в различном характере диссоциации комплексных соединений на ионы. Так, вещество состава oS04Br(NHз)5 сушествует в виде двух изомеров один с нитратом серебра дает осадок Ag2S04, другой — А Вг при действии хлорида бария один дает осадок Ва304, другой не образует осадка водные растворы одного изомера имеют большую электропроводимость. [c.335]

    Структурная изомерия. Этот вид изомерии характеризуется тем, что при образовании комплексного соединения присоединяемые молекулы, имеющие одинаковую брутто-формулу, отличаются различными структурными формулами. Еще в 1906 г. Розенгейму и В. Мейеру удалось синтезировать структурные изомеры состава [(NH2)2 S2l2 Ме (5С )2 и (ЫН43СЫ)2- Ме (5СЫ)2, где Ме — двухзарядные ионы 2п, Со или Hg. При [c.377]

    Она состоит иа шести глав, построенных в основном по одному принципу описание основных экспериментальных методов в данной области, основы теории и сводка опытного материала. Рассматриваются следующие вопросы термодинамика образования комплексов ионов металлов в растворах, скорости реакций комплексов пе)еходпых металлов, изомерия комплексных соединений, спектры поглощения комплексных соединений в видимой и ультрафиолетовой областях, инфракрасные спектры комплексов переходных металлов, магпетохимия комплексных соединений. [c.4]

    Исторические сведения. Координационная теория была создана Альфредом Вернером. Она возникла в связи с изучением соединений металлов с аммиаком, состав которых нельзя было объяснить на основании старой теории валентности, т. е. нри попытках отнести их к соединениям первого порядка. Вернер показал, что состав этих и многих других соединений можно объяснить без каких-либо вспомогательных допущений, если только за основу принять положение, что атомы после насыщения их обычных валентностей способны проявить еще дополнительные валентности. Это положение в большинстве случаев является непосредственным выводом из наблюдений так, в неоднократно упоминавшемся примере трехфтористого бора бор присоединяет еще один ион фтора. Для аммиакатов и их производных Вернер сумел также установить существование изомерных соединений с различными конфигурациями и пришел таким образом к установлению понятия о неорганической изожрии и к стереохимии неорганических соединений. Эти стереохимические представления получили поразительное подтверждение благодаря открытию предсказанной на их основе оптической изомерии комплексных соединений, например у комплексных соединений кобальта, хрома, платины (подробнее см. т. П). Основные поло- [c.433]


    Необходимым условием для образования геометрических изомеров комплексных соединений является их кинетическая устойчивость. Поэтому данный тип изомерии встречается у комплексов тех ионов металлов, которые характеризуются электронными конфигурациями или (см. разд. 2.2.4), проявляющими тенденцию к образованию кинетически устойчивых комплексов. В зависимости от относительного положения лигандов можно различать цис-и гранс-изомеры. Плоский комплекс типа МА2В2 может иметь следующие геометрические изомеры  [c.58]

    Теория образования комплексных соединений. Донорно-акцеп-тсрпая связь. Комплексообразователь (центральный ион), адденды, (лиганды) внутренняя и внешняя сфера. Заряд комплексного иона. Ионы элементов, склонные быть комплексообразовзтелями. Координационное число. Молекулы и ионы, склонные входить в состав комплексов в качестве аддендов. Акво-комплексы, ацидо-комплексы, аммиакаты. Электролитическая диссоциация комплексных соединений. Константа нестойкости комплексного иона. Различные случаи изомерии комплексных соединений. Рчомплексные соединения в обменных и окислительно-восстановительных реакциях. Рациональная номенклатура комплексных соединений [c.154]

    Ионизационная (ионная) изомерия. Комплексные соединения — темно-красное [Со (NH3)sBr] SO4 и красное [ o(NH3)sS04] Вг при диссоциации в воде дают различные анионы первый — сульфат-ион SO , а второй — бромид-ион Вг-. При введении в раствор первого соединения соли бария выпадает белый осадок BaS04 при добавлении к раствору второго соединения нитрата серебра (I) выпадает желтоватый осадок AgBr. Таким образом, подтверждаются координационные формулы комплексных катионов. Другие примеры изомерии этого типа  [c.356]

    Исторические сведения. Координационная теория была создана Альфредом Вернером. Она возникла в связи с изучением соединений металлов с аммиаком, состав которых нельзя было объяснить на основании старой теории валентности, т. е. при попытках отнести их к соединениям первого порядка. Вернер показал, что состав этих и многих других соединений можно объяснить без каких-либо вспомогательных допущений, если только за основу принять положение, что атомы после насыщения их обычных валентностей способны проявить еще дополнительные валентности. Это положение в большинстве случаев является непосредственным выводом из наблюдений так, в неоднократно упоминавшемся примере трехфтористого бора бор присоединяет еще один ион фтора. Для аммиакатов и их производных Вернер сумел также установить существование изомерных соединений с различными конфигурациями и пришел таким образом к установлению понятия о неорганической изомерии и к стереохимии неорганических соединений. Эти стереохимические представления получили поразительное подтверждение благодаря открытию предсказанной на их основе оптической изомерии комплексных соединений, например у комплексных соединений кобальта, хрома, платины (подробнее см. т. II). Основные положения теории Вернера, как прежде называли координационную теорию, приобрели большое значение во всех областях химии. Среди исследователей, которые развили теорию Вернера в координационное учение, распространившееся в настоящее время на многие области химии, первое место занимают Пфейффер (Pfeiffer Р.) и Вейнланд (Weinland R.). [c.388]

    Поскольку транс-влияние СГ выражено сильнее, чем H3N, на второй стадии этих реакций замещается лиганд, находящийся в транс-положении к СГ. Таким образом, исходя из иона [Pt(NH3)J , можно получить только транс-изомер, а из иона [Pt lJ — только цис-нзомер. Принцип транс-влияняя сыграл выдающуюся роль в развитии синтеза комплексных соединений. [c.616]

    В непосредственной близости к центральному иону располагаются молекулы или ионы (так называемые заместители, адденды, или лиганды), образующие внутреннюю координационную сферу комплексного соединения. В настоящее время в литературе принято обозначать внутреннюю сферу комплексного соединения, включая центральный ион, термином комплекс. Если кислотные остатки, присутствующие во внутренней сфере, нейтрализуют заряд центрального иона, то соединение, как правило, не содержит в своем составе других ионов. Примером такого типа соединений являются только что упомянутые изомеры [Р1(ЫНз)2С12], относящиеся к неэлектролитам. Но чаще суммарный заряд ионов внутренней сферы не равен заряду центрального иона, тогда комплекс представляет собой комплексный ион, [c.27]

    Известно, что комплексное соединение [Р1(ЫНз)2С14], из которого хлор не осаждается ионами серебра, имеет два геометрических изомера. Выберите на рис. 8-2 соответствующую структуру и изобразите строение комплекса. [c.57]

    Ионизационная изомерия связана с различным распределением ионов между внешней и внутренней сферами комплексного соединения, например (Со(МНз)зВг)80< и Со(МНз)5504)Вг 1Со(Еп)а(М01)С1]С1 и 1Со(Еп)1СЫ N02 (Еп - молекула этилендиамина NH2 HJ H2NH2). [c.126]

    Ионизационная изомерия связана с различным распределением ионов между внешней и внутренней сферами комплексного соединения, например [ o(NH3)jBrJS04 и l o(NHa)5S04JBr [ o(en)2(N02) l] l и l o(en)2 lJN02. Молекула этилендиамина NH. — Hj— Hg— NHj сокращенно обозначена еп. [c.215]

    Интересен вопрос о закрытых конфигурациях с неравноценным расположением лигандов здесь уточняется постулат о полной равноценности всех связей в комплексном ионе с одинаковыми лигандами. На первых этапах развития координационной химии комплексные соединения рассматривали как возникшие в результате объединения нескольких валентно-насыщенных молекул и записывали, например, в виде 2КС1Р1С14 вместо современной записи К2 [Р1С1а]. После того как выяснилось, что все шесть атомов хлора координируются платиной, встала задача определить, отличаются ли в комплексном ионе свои четыре атома хлора от чужих . Исследование показало, что ион представляет собой октаэдр, в котором все лиганды равноценны. Это привело к представлению о том, что все связи (по крайней мере в конфигурации с одинаковыми лигандами) в комплексных ионах равноценны, И действительно, связи металл—лиганд совершенно не зависят от происхождения лиганда. Что же касается их равноценности в статическом (длина, направленность, полярность, энергия и т. д,) и динамическом (реакционная способность) смысле, то этот вопрос требует уточнения с двух точек зрения. Во-первых, некоторые квантово-механические эффекты ведут к более или менее сильному искажению симметричных конфигураций (эффект Яна — Теллера). Во-вторых, лиганды принципиально неравноценны в некоторых бипирамидах и пирамидах с центральным расположением иона металла. При одинаковых лигандах конфигурация тригональной бипирамиды осуществляется в пентакарбоннле железа Ре(СО)з, в ионе [СиСи] - и т, п. Три связи в горизонтальной плоскости расположены здесь под углом 120 °С друг к другу с остальными двумя связями каждая из них составляет угол 90°, При этом даже если длины всех связей одинаковы, положения 1 н 5 и 2, 3, 4 неравноценны. Если при реакциях замещения конфигурация бипирамиды сохранится, то можно ожидать появления двух однозаме-шенных геометрических изомеров — экваториального и аксиального. Так, комплекс Мп(СО)4МО в кристаллической фазе при —110°С имеет симметрию С21., те. является экваториальным изомером, в газовой же фазе и в растворах он существует в виде аксиального изомера. [c.165]

    Различные углы поворота вокруг ординарных связей фиксируются при замыкании циклов, т. е. при образовании хелатных комплексных соединений. Так, ион [ o(NH2 H2 H2 H2NH2)з] + в бро-мидных растворах присутствует в виде двух изомеров в одном все шестичленные циклы имеют конфигурацию кресла, а во втором — гвисг-конформацию. Первый изомер примерно на 2 кДж/моль более выгоден энергетически. Конформаци- [c.167]

    Для инертных комплексных ионов в растворе некоторое время может существовать неравновесная смесь изомеров и инертные комплексы могут быть переведены в твердую фазу без изменения строения. Так, соединение [Со(МНз) 5 I ]С1 а и в кристалле, и.в растворе состоит из ионов [ o(NHg)5 lp+ и С1 . При растворении же, например, алюмокалиевых квасцов, в кристаллах которых ионы 8042"координированы алюминием, оказывается, что лишь очень малая доля ионов в растворе связана в сульфатные комплексы. По мере разбавления раствора комплексного соединения степень диссоциации лабильных комплексов увеличивается, так как лиганды из них вытесняются растворителем, инертные же комплексные ионы не изменяются. [c.50]

    Координационная теломернзация 4/1026, 1027 Координационно-ионная полимернза-ци 2/920, 673, 921, 922 1/308 3/28, 743, 1265-1267 4/28, 31, 81 Координационные соецниення 2/925 5/108. См. также Комплексные соединения, Комплексы в аналитической хнмин, см. Комплексонометрия, Комплексоны диссоциация 2/930, 931, 933 н лиганды, см. Координационное число. Лиганды изомерия 2/369, 928-930, 943 кристаллические 2/1055, 1056 [c.631]


Смотреть страницы где упоминается термин Изомерия в комплексных соединениях ионная: [c.72]    [c.210]    [c.175]    [c.276]    [c.362]    [c.2]    [c.260]    [c.269]    [c.411]    [c.328]    [c.14]   
Неорганическая химия (1987) -- [ c.356 ]




ПОИСК





Смотрите так же термины и статьи:

ИОНЫ И ИОННЫЕ СОЕДИНЕНИЯ

Изомерия комплексных ионов

Изомерия комплексных соединени

Ионная изомерия

Ионы комплексные

Комплексные изомерия

Комплексные соединения изомерия

Соединение ионов

Соединения ионные



© 2025 chem21.info Реклама на сайте