Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Водород самовоспламенения

    Натрий довольно широко применяется в качестве теплоносителя в различных энергетических установках. Он обладает достаточно хорошими физическими и теплофизическими свойствами, позволяющими осуществлять интенсивный теплосъем в различных теплообменных аппаратах (теплотворная способность 2180ккал/кг коэффициент теплопроводности, кал (см-с-град), 0,317 при 21 °С и 0,205 при 100 °С). Вместе с тем натрий характеризуется и существенными недостатками. Он обладает высокой химической активностью, благодаря которой он реагирует со многими химическими элементами и соединениями. При его горении выделяется большое количество тепла, что приводит к росту температуры и давления в помещениях. Он обладает большой реакционной способностью [температура горения около 900 °С, температура самовоспламенения в воздухе 330—360 °С, температура самовоспламенения в кислороде 118°С, минимальное содержание кислорода, необходимое для горения, 5 % объема, скорость выгорания 0,7—0,9 кг/ /(м2-мин)]. При сгорании в избытке кислорода образуется перекись NaaOa, которая с легкоокисляющимися веществами (порошками алюминия, серой, углем и др.) реагирует очень энергично, иногда со взрывом. Карбиды щелочных металлов обладают большой химической активностью в атмосфере углекислого и сернистого газов они самовоспламеняются энергично и взаимодействуют с водой со взрывом. Твердая углекислота взрывается с расплавленным натрием при температуре 350 °С. Реакция с водой начинается при температуре —98 °С с выделением водорода. Азотистое соединение NaNa взрывается при температуре, близкой к плавлению. В хлоре и фторе натрий воспламеняется при обычной температуре, с бромом взаимодействует при темпера- [c.115]


    Разделение воздуха осуществляют главным образом глубоким охлаждением, сжижением и последующей ректификацией. Готовой продукцией воздухоразделительных установок являются газообразные и жидкие кислород и азот. На установках высокого давления кроме кислорода получают аргон и неоногелиевую смесь. Жидкий кислород представляет собой прозрачную голубоват/ю быстро испаряющуюся при комнатной температуре жидкость. При испарении 1 л жидкого кислорода при 20 °С и нормальном давлении образуется 860 л газообразного кислорода. Горючие газы (водород, ацетилен, метан и др.) образуют с кислородом взрывчатые смеси. Смазочные масла, а также их пары, при соприкосновении с чистым кислородом способны к самовоспламенению со взрывом. [c.121]

    Калий и его аналоги располагаются в самом начале ряда напряжений. Взаимодействие калия с водой сопровождается самовоспламенением выделяющегося водорода, а взаимодействие рубидия и цезия — даже взрывом. [c.491]

    Сложный химический процесс взаимодействия водорода с кислородом, представляемый брутто-уравнением (4.1), имеет ряд специфических особенностей. Его максимальный механизм относительно малоразмерен, а компоненты немногочисленны и имеют достаточно простое строение, что позволяет провести несложные оценки значений всех коэффициентов скорости элементарных стадий. Основные особенности процесса в той или иной мере присущи другим аналогичным процессам, и трудно назвать какую-либо особенность горения газов вообще, не присущую этому процессу в частности. В этом смысле универсальность процесса окисления водорода просто поразительна. Например, в зависимости от начальной температуры и стехиометрии ведущий механизм процесса может быть цепно-тепловым, цепным разветвленным, цепным неразветвленным и даже неценным (тепловым) в зависимости от начального давления процесс может иметь либо гомогенный, либо гомогенно-гетерогенный характер в зависимости от начальных температур и давления процесс может демонстрировать один, два, три и даже четыре предела самовоспламенения ( четвертый предел носит вы-роноденный характер) и т. д. [c.247]

    Воспламенение (инициирование горения) топлива возможно в смеси с воздухом и происходит путем принудительного зажигания топлива от электрической искры (бензиновые, реактивные, газотурбинные двигатели) или в результате самовоспламенения (дизельные двигатели). Одной из основных характеристик воспламеняемости углеводородов, входящих в состав нефтяных топлив, являются пределы воспламенения (табл. 16). Широкие пределы воспламенения имеет водород. С увеличением молекулярной массы углеводородов пределы воспламенения несколько сокращаются [c.78]


    Пределы взрываемости, % водорода Температура самовоспламенения, °С Максимальная [c.9]

    Самовоспламенение водорода при истечении из трубопроводов и аппаратов, находящихся под высоким давлением, часто является причиной аварии. Однако эта опасность не всегда учитывается производственниками. Так, на установке для производства метанола и деструктивной гидрогенизации продуктов переработки нефти при избыточном давлении 32 МПа (320 кгс/см ) произошел выброс циркуляционного газа, содержащего 70% водорода. [c.336]

    Водород — бесцветный горючий газ. Температура кипения —252,8 X, самовоспламенения 510°С, плотность по воздуху 0,0695,. область воспламенения в воздухе 4,0—75% (об.), в кислороде 4,1— 96% (об.). [c.89]

    В школьной практике взрывы бывают вызваны чаще всего горением смесей газов или паров горючих и легковоспламеняющихся веществ с воздухом. Чем ниже температура вспышки паров, тем больше опасность взрыва веществ, имеющих очень низкую температуру кипения, как метан, этилен, ацетилен, водород и др. Можно грубо считать, что относительная опасность взрыва обратно пропорциональна величине температуры самовоспламенения. [c.53]

    Водород в смеси с кислородом образует гремучую смесь . Температура самовоспламенения водорода в смеси с углеводородами снижается до 400 С, что обуславливает особые требования к контролю за герметичностью системы и предотвращению загазованности. [c.254]

    В некоторых случаях, например при взаимодействии гидрида кальция с водой, реакция протекает сравнительно спокойно и выделившегося тепла недостаточно для самовоспламенения образовавшегося водорода. Однако следует помнить, что и в этом случае выделившиеся газы могут воспламениться от постороннего источника зажигания. [c.38]

    Если ремонт проводят в цехе, где постоянно существует опасность образования горючих и взрывоопасных смесей, запрещается не только проведение огневых работ, но и применение искрящего инструмента (в производствах) с использованием ацетилена, водорода и некоторых других газов, а также не допускаются сверловка, резка, опиловка, пескоструйная обработка деталей, т. е. работы, при которых возможен нагрев инструмента или отдельных частей оборудования до температуры воспламенения (самовоспламенения) горючих паров и газов. [c.119]

    Простейшим огнепреградителем является защитная сетка (сетка Деви), которая, будучи помещена в горючую газовую смесь, разбивает ее на мелкие объемы, в которых самовоспламенение произойти не может. Защитная сетка применяется в шахтерских лампах, огнепреградителях, на резервуарах с ЛВЖ и воЗ Душных трубах бензохранилищ, а также в трубопроводах небольшого диаметра, по которым транспортируются газообразные углеводороды. Защитная сетка не применяется для смесей воздуха с водородом, ацетиленом, парами сероуглерода, спиртов, эфиров и т. д. [c.84]

    В атмосфере хлора и фтора щелочные металлы самовоспламеняются. С жидким бромом литий и натрий реагируют замедленно, остальные металлы — бурно, со взрывом. С иодом взаимодействие протекает менее энергично. Литий с водой взаимодействует спокойно, для натрия наблюдается значительный тепловой эф( зект, но выделяющийся водород обычно не воспламеняется. У калия взаимодействие с водой сопровождается самовоспламенением водорода, рубидий и цезий реагируют с водой со взрывом, вытесняют водород из воды (льда) даже при —108 °С. Щелочные металлы взаимодействуют ие только с водой, но и с другими водородсодержащими соединениями, например со спиртами  [c.252]

    Водород, ацетилен и сероуглерод обладают более низкими по сравнению с аммиаком и метаном температурами самовоспламенения, в связи с чем ширина зазора для этих смесей принимается значительно меньше. [c.86]

    Взаимодействие лптпя с [1еочИ1Ценпым водородом приводит к загрязнению гидрида кислородом (оксидом лития) и часто сопровождается самовоспламенением металла. Поэтому для получения чистого гидрида лития водород нужно тщательно очистить от паров воды и кислорода, пропустив его через раскаленные магниевые стружки (см. очистка водорода). [c.109]

    Для предотвращения самовоспламенения водорода и образования взрывоопасных воздушно-водородных и пароводородных смесей применяются специальные дожигатели водорода внутри защитной оболочки реактора, а также устройства сдувки парогазовой смеси из свободного пространства реактора с последующим дожиганием. [c.418]

    Детально изучена реакция фторирования водорода. Она протекает с типичным для разветвленных цепных реакций самовоспламенением, которое возникает в определенном р < < Р < Рг) диапазоне давлений смеси Нг + Рг, как в случае горения водорода. В областях самовоспламенения кинетика реакции описывается законом е . Механизм реакции включает в себя следующие элементарные стадии  [c.431]

    К веществам, вызывающим горение при воздействии на них воды, относятся металлические натрии и калий, карбид кальция, карбиды щелочных металлов, фосфористые кальций и натрий, гидраты щелочных и щелочноземельных элементов и др. Попадание на такие вещества воды крайне опасно. Например, карбид кальция при действии даже незначительных количеств влаги разлагается с выделением ацетилена. Реакция экзотермическая и протекает с больтинм выделсипсм тепла (выше 500—700 °С), что вызывает самовоспламсиепие образующегося ацетилена и может привести к взрыву. Щелочные металлы ири взаимодействии с водой окисляются, выделяя большое количество тепла, что вызывает самовоспламенение образующегося при этом водорода. В мелко раздробленном виде металлические калий и натрий воспламеняются на влажном воздухе. [c.53]


    Так, при действии концентрированных растворов Н2О2 на бумагу, опилки или другие горючие вещества происходит их самовоспламенение. Восстановительные свойства перекись водорода проявляет только по отношению к таким сильным окислителям, как ионы МпОГ Для пероксида водорода характерен также распад по типу диспро-гюрционирования  [c.316]

    Напротив, реактивы Гриньяра действуют исключительно на окись углерода в тетракарбониле никеля, и никель выпадает в виде черного осадка. Однако другие реактивы оставляют незатронутой основную структурную схему молекулы карбонила. Например, окись углерода может лишь частично замещаться галогенидами с образованием карбонилгалогенидов. Молекулы-доноры электронов типа аммиака образуют при действии на карбонилы аммиакаты карбонилов типа Ре(СО) з(ЫНз)г. Действие водорода (обычно в сильнощелочных растворах) приводит к образованию карбонилгидридов. Все карбонилы активны по отношению к кислороду воздуха, а некоторые из них склонны к самовоспламенению. Все или почти все карбонилы чрезвычайно ядовиты. [c.224]

    Причиной возникновения очагов микровзрывов в несгоревшей части ТВС является следующее. После момента зажигания (точка 3 на рис. 3.44) давление в цилиндре начинает резко расти и соответственно нарастает парциальное давление кислорода в еще не сгоревшей части ТВС. Это способствует интенсивному окислению углеводородов и в том числе образованию пероксидов (ROO-R или ROO-H) - неустойчивых соединений, содержащих в составе своих молекул горючие элементы (водород и углерод) и окислитель (кислород). Распадаясь, эти соединения создают множество очагов самовоспламенения по всему объему, что приводит к резкому всплеску давления в цилиндре (кривая 2 на рис. 3.44), колебания которого не затухают (из-за ударных волн) даже после того, как поршень идет вниз от ВМТ. [c.178]

    Большое влияние на рабочий процесс двигателя оказывают свойства топлива (табл. 2), определяющие качество смесеобразования. При использовании водорода в качестве топлива для ДВС могут применяться несколько способов смесеобразования для двигателей с зажиганием от искры — внешнее и внутреннее (подача водорода как в процессе впуска, так и на линии сжатия) для двигателей с самовоспламенением — внешнее и внутреннее (подача водорода на линии сжатия и зажигание путем впрыска запальной дозы жидкого углеводородного топлива, а также подача водорода в конце такта сжатия по определенному закону совместно с запальной дозой жидкого углеводородного топлива) для газовых турбин — внутреннее с непрерывной подачей водорода в зону горения. [c.11]

    Сравнение влияния изменения диаметра сосуда и примеси инертного газа на второй предел по давлению привел Ванпе и Фалли к выводу о близкой в этом случае природе воспламенения водородо- и метапо-кисло-родных смесей. Эти авторы отвергают поэтому предположение о том, что явление трех пределов самовоспламенения углеводородов по давлению вызывается взрывом СО. Взамен этого они считают, что это явление вызвано цепным воспламенением водорода, протекающим как разветвленная ценная реакция по механизму [c.89]

    Ряд веществ способен к самовоспламенению при соприкосновении с воздухом при обычной температуре без постороннего импульса воспламенения. Такие вещества называют пирофорами. К пирофорам относятся белый фосфор, фтористый водород, сульфиды железа, арсипы, свежеприготовленная сажа, алюминийалкилы, применяемые в качестве составной части катализаторов в производствах органического синтеза и другие вещества. [c.37]

    Для некоторых смесей наблюдалась существенная зависимость UH от введения в смесь присадок. Хорошо известно, например, что введение в смесь СО-ьОз незначительных количеств воды, водорода, метана или других водородсодержащих соединений вызывает резкое возрастание значения Ын- Значение Ua для смеси СО-ЬОг равно 1 м/с, а после добавки 0,23% воды оно возросло до 7,8 м/с. Введение столь незначительного Количества воды практически не изменяет каких-либо физических свойств смеси, поэтому очевидно, что такой эффект обусловлен изменением химического механизма процесса. Наблюдалось увеличение на 53% скорости горения бутано-воздушной смеси в присутствии 1,48% озона. Присадки, инициирующие самовоспламенение смеси (этилнитрат, этилпероксид и др.), а также антидетонаторы (тетраэтилсвинец, нентакарбонилжелезо, ди-этилолово, тетраметилолово) не оказывают существенного влияния на скорость распространения пламени. Этот экспериментальный факт убедительно свидетельствует о том, что механизм реакций, протекающих в предпламенной зоне, существенно отличается от механизма предпламенных процессов при самовоспламенении (взрывном горении) смеси. [c.119]

    Водород (Нг)—при нормальных условиях газ без цвета, вкуса и запаха. Легко воспламеняется в воздухе и кислороде, горит бледным голубоватым пламенем, плохо растворяется в воде. Смесь водорода с кислородом способна взрываться при содержании в ней от 4,1 до 967о (об.) водорода, а смесь с воздухом— при содержании водорода от 4 до 75% (об.). Температура самовоспламенения— 510°С, температура плавления — 259,2°С, температура кипения — 252,8°С. Молекуля рная масса 2,016, плотность 0,0899 кг/м , плотность по воздуху 0,0695, растворимость в воде незначительная. Ток-сическо го действия на организм человека водород не оказывает и лишь в больших концентрациях может вызвать удушье вследствие уменьшения концентрации кислорода в воздухе. В качестве индивидуальной меры защиты применяют изолирующие противогазы. [c.20]

    В диапазоне воспламенения любой газовоздушной смеси существует минимальная температура, известная как температура самовоспламенения, ниже которой самопроизвольная реакция окисления невозможна. Значения температур воспламенения представлены в табл. 1.2 работы [Harris, 1983], а также в других справочных материалах. Для парафинов диапазон температур самовоспламенения составляет от 214 °С для гептана до 540 °С для метана. Для олефинов (этиленовых углеводородов) температуры самовоспламенения несколько ниже, чем для соответствующих парафинов. Температура воспламенения водорода выше по сравнению с метаном. Известен также такой важный параметр, как минимальная энергия зажигания. Ее значения для парафинов находятся в диапазоне 0,25 - 0,29 МДж, для водорода и ацетилена они значительно меньше - около 0,02 МДж. [c.278]

    Продолжительность периода задержки воспламенения и температура самовоспламенения дизельного топлива зависят прежде всего от его химического состава. А.пкановы углеводороды, будучи менее термически устойчивыми, быстро претерпевают процесс распада с образованием перекисей и других продуктов неполного окисления, имеющих низкую температуру самовоспламенения. У ароматических углеводородов это произойдет лишь после того, как выделится водород, для чего необходимы более высокая температура и больший промежуток времени. [c.65]

    Использование водорода в дизельных двигателях в значительной степени затрудняется высокими температурами самовоспламенения водородновоздушных смесей. Поэтому для организации устойчивого воспламенения водорода дизели переоборудуют в двигатели с принудительным зажиганием от свечи или переводят на работу по газожидкостному процессу — с впрыском запальной дозы жидкого топлива (обычно дизельного). Водород может подаваться как совместно с воздухом, так и непосредственным впрыском в цилиндры. Устойчивая работа дизеля на водороде обеспечивается только в узком диапазоне топливных смесей, ограничиваемом пропусками воспламенения и детонацией (рис. 4.22). [c.174]

    Так, при действии концентрированных растворов Н2О2 на бумагу, опилки или другие горючие вещества происходит их самовоспламенение. Восстановительные свойства перекись водорода проявляет только по отношению к таким сильным окислителям, как МпО,. [c.343]

    Товарная хлорная кислота имеет концентрацию 70— 72% и является самой сильной из кисло г. На холоду кислота взаимодействует с активными металлами. При этом выделяется водород и образуются перхлораты, которые в чистом виде являются взрывчатыми веществами. Горячая кислота действует как сильный окислитель. При контакте товарной кислоты с органическими веществами возмои<ен взрыв или самовоспламенение. Из хлорной кислоты и окиси азота образуется нитрозил перхлората ЫОСЮ -НгО. При обычной температуре кристаллы этого продукта мгновенно воспламеняют эфир, спирт, ацетон или мочевину, а капли охлажденного льдом анилина с указанным продуктом дают особенно сильные взрывы. [c.280]

    Как отмечено выше, для инициирования горения водорода достаточна энергия, равная 0,02 МДж. Однако при определенных условиях возможно и самопроизвольное возникновение пламени в водородно-воздушных смесях. Этот процесс может быть инициирован внешним источником активных центров. Установлено существенное влияние активных центров, созданных внешним источником на период индукции при самовоспламенении водородно-кислородной смеси. Это влияние оценено путем численного моделирова- [c.95]

    Взаимодействие калия с водой сопровождается самовоспламенением выделяющегося водорода, а рубия и цезия — взрывом. [c.260]

    Гидриды рубидия и цезия чрезвычайно химически активные соединения. Они разлагают воду (бурно) и этанол, выделяя водород и образуя соответственно гидроокиси и алкоголяты. Уже под действием паров воды воздуха МеН окисляются, воспламеняясь. Самовоспламенение наблюдается в атмосфере фтора и хлора при этом образуются MeF и МеС1. При нагревании с азотом и аммиаком образуют амиды, с фосфором — фосфиды, с ацетяленом — ацетилиды. Обладая не только сильными восстановительными, но и каталитическими свойствами, они находят применение в реакциях конденсации и полимеризации [10]. [c.106]

    Так, при действии концентрированных растворов Н2О2 на бумагу, опилки или другие горючие вещества происходит их самовоспламенение. Восстановительные свойства пероксид водорода проявляет по [c.347]

    Серная кислота Н2304, едкая негорючая жидкость. Мол. вес 98,08 плотн. 1834 кг/ж т. пл. 10,37° С т. кип. 330°С (98,3%) плотн. пара по воздуху 3,4 растворимость в воде не ограничена. Разбавленная кислота растворяет металлы с выделением водорода, концентрированная вызывает самовоспламенение некоторых горючих веществ. [c.230]


Библиография для Водород самовоспламенения: [c.425]   
Смотреть страницы где упоминается термин Водород самовоспламенения: [c.68]    [c.149]    [c.332]    [c.213]    [c.216]    [c.223]    [c.128]    [c.192]    [c.132]    [c.40]    [c.98]   
Технология связанного азота Издание 2 (1974) -- [ c.96 ]




ПОИСК







© 2025 chem21.info Реклама на сайте