Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Хиральные реагенты

    НОВЫЙ метод (рис. 2.7). Предшественником а-аминокислоты является соответствующая а-кетокислота. а-Кетокислота реагирует с хиральным реагентом и образует цикл минимального размера, в который входит гидразон. Специфическое восстановление двойной связи приводит к появлению хирального атома углерода в соответствующей а-аминокислоте. В результате гидрогенолиза этого промежуточного соединения образуются хиральная аминокислота и хиральный вторичный аминоспирт, который можно превратить в исходный хиральный реагент. [c.94]


    Такой метод разделения косвенно связан с другим, в котором природа является единственным богатым источником оптически чистых хиральных реагентов. Во многих случаях разделение рацематов произведено с помощью сложных оптически активных оснований биологического происхождения, для которых в природе существует только один энантиомер (например, хинин, цинхонин или стрихнин). [c.197]

    Однако энантиомеры по-разному вращают плоскость поляризации линейно поляризованного света. Существенно отличаются также реакции энантиомеров с хиральными реагентами или реакции, катализируемые хиральными реагентами. [c.168]

    Возможность отличить друг от друга оптические антиподы предоставляют прежде всего измерения оптической активности. На практике поляриметрическими измерениями пользуются для этой цели так часто, что забывают о существовании других отличий у антиподов. Так, в некоторых случаях различна, зеркальна, форма кристаллов антиподов. Различно отношение антиподов к хиральным реагентам и в особенности к ферментам. Различны спектры ЯМР в хиральных растворителях. Как видно из этого перечисления, различий набирается не так уж мало, однако тем не менее поляриметрическое определение знака оптического вращения остается наиболее часто применяемым приемом идентификации антиподов. Это нередко создает у начинающего изучать стереохимию иллюзию, что знак вращения непосредственно выражает конфигурацию, т. е. пространственное расположение заместителей вокруг хирального центра. Чтобы рассеять эту иллюзию, напомним о том, что знак вращения одного и того же антипода может меняться в зависимости от условий измерения — природы растворителя, концентрации, температуры, длины волны света. [c.63]

    Реакция образования диастереомеров является основой для оптимального способа разделения рацемических смесей. При взаимодействии рацемата с оптически чистым хиральным реагентом (т. е. содержащим только один энантиомер) образующуюся смесь диастереомерных продуктов можно разделить [c.196]

    Если рацемическая смесь одного хирального реагента (А) реагирует с рацемической смесью второго хирального реагента (В), то образуются четыре продукта  [c.198]

    Описанный выше метод расщепления рацемических смесей на самом деле является еще одним примером выделения энантиомеров через диастереомеры. Реакции, осуществляемые в живых системах, контролируются белковыми катализаторами (ферментами), которые сами являются оптически активными соединениями. Способность организма включать в обмен веществ какое-либо вещество зависит от наличия ферментов, которые, прежде чем катализировать химическую реакцию, адсорбируют молекулы (гл. 21). Это превращение является составной частью процесса переваривания. Первоначальное образование фермент-субстратного комплекса — это еще один пример взаимодействия одного энантиомера хирального реагента (фермента) с рацематом. Тот энантиомер рацемического субстрата, который легче соединяется с ферментом, и будет предпочтительно вступать в обмен веществ. [c.199]


    В принципе и в неферментативных реакциях при взаимодействии прохиральных молекул с хиральным реагентом должна предпочтительно реагировать одна из двух сходных групп, но селективность в таких случаях по сравнению с ферментативными реакциями очень низка. Ниже приведен пример взаимодействия прохирального циклического ангидрида с одним энантиомером хирального амина в результате образуются два диастереомерных амида с разными выходами. Реакция прохирального ангидрида с симметричным амином дает рацемическую смесь двух энантиомерных амидов  [c.344]

    Наиболее перспективный источник хиральных реагентов ввиду широкого распространения и воспроизводимости в глобальных масштабах при фотосинтезе.- Прим. ред. [c.459]

    Тетраэдрическую модель строения органических соединений предложили Вант-Гофф и Ле Бель в 1874 г. Они пришли к выводу, что если две молекулы являются стереоизомерами, то их можно описать зеркальными формулами, и если один изомер вра-шает плоскость поляризации влево, то второй должен вращать вправо. По знаку вращения можно определить относительную конфигурацию стереоизомеров. Однако между абсолютной конфигурацией, т.е. истинным расположением групп вокруг данного хирального центра, и знаком вращения прямого соответствия нет. Определить абсолютную конфигурацию химическими методами, если не известна абсолютная конфигурация хотя бы одного хирального реагента (а так и было вначале), невозможно. Спектральные методы могуг дать информацию только об относительной конфигурации. В настоящее время существуют лишь два метода независимого определения абсолютной конфигурации теоретический расчет и исследование аномальной дифракции рентгеновских лучей на ядрах тяжелых элементов. [c.34]

    В качестве исходного в этом методе был выбран хиральный реагент, представляющий собой бициклическое производное ин-долина, синтез которого приведен ниже. Абсолютная стереохими-ческая конфигурация этого бициклического производного была определена путем коррелирования с ь(—)-фенилаланином. Он имеет простую жесткую структуру, необходимую для обеспече- [c.94]

    Особое место среди ЛСР занимают оптически активные (хиральные) реагенты, например, с лигандом ТФК- Они открыли новые возможности для исследования методом ЯМР оптически активных соединений. Известно, что спектры ЯМР оптических антиподов (О) и (Ь) неразличимы. При введении хирального ЛСР (/ ), способного образовывать аддукт с оптически активным субстратом, образуются два диастерео-мерных аддукта О — и Ь — / . Они неодинаковы как в химическом отношении, так и по спектрам ЯМР. Поэтому, если был взят рацемат, наблюдается расщепление спектральных линий на равноинтенсивные компоненты, а если был взят один из антиподов, то такое расщепление произойти не должно. Например, при исследовании соединения [c.111]

    Поскольку два соединения, получающиеся при замене Н на 2 (46 и 47), не идентичны, а энантиомерны, атомы водорода в исходной молекуле неэквивалентны. Такие атомы или группы, дающие при замещении третьей группой энантиомеры, называют энантиотопными. В симметричном окружении такие два атома водорода ведут себя как эквивалентные, но в несимметричном окружении они могут вести себя по-разному. Например, при взаимодействии с хиральным реагентом они могут подвергаться атаке с различной скоростью. Это имеет важнейшее значение в ферментативных реакциях [127], так как ферменты способны к гораздо большей степени дифференциации, чем обычные хиральные реагенты. Примером служит цикл Кребса в биологических объектах, где щавелевоуксусная кислота (48) превращается в а-оксоглутаровую кислоту (50) через последовательность превращений, включаюш,их промежуточное образование лимонной кислоты (49). При проведении процесса с ща- [c.172]

    НОСТЬ ферментов и других хиральных реагентов различать альтернативные реакционные центры в прохиральных молекулах требует введения систематического метода, с помощью которого можно различить эти характерные особенности прохиральных молекул. В ахиральном окружении прохиральные молекулы становятся идентичными. Прохиральность в молекуле может появляться двумя путями, для каждого из которых необходима своя номенклатура. [c.349]

    Существование топологической хиральности недавно получило экспериментальное подтверждение. Анализ ЯМР-спектров узла 127 2Си , записанных в присутствии хиральных реагентов, ясно показал, что это вещество представляет собой рацемическую смссь [20d], и, как показачо рентгеноструктурное исследование, кристаллизуется как смесь двух энантиомеров [20с]. [c.434]

    Ясное понимание топических взаимоотношений между лигандами в молекуле весьма полезно при интерпретации спектров ЯМР. Гомотопные ядра всегда имеют один и тот же химический сдвиг) соответствующие сигналы называют изохронными. Однако диастереотопные ядра могут различаться по величине химического сдвига в подобном случае наблюдаемые сигналы называют анизохрон-ными. В ахиральных растворителях энантиотопные ядра дают изохронные сигналы, но в присутствии хиральных растворителей [66] или комплексообразователей [67], включая и ферменты, которые можно рассматривать как хиральные реагенты, удается обнаружить разницу между энантиотопными лигандами. Таким образом, энантиотопные ядра в хиральном окружении могут проявлять ани-зохронность. [c.48]


    Очень важной проблемой органического синтеза является энантиоселективное алкилирование альдегидов металлооргаиическими соединениями. Реакцию можно осуществить с иомохщ>ю лтггий-, магний-, цинк-, алюминий- и борорганических соединений. Например, при взаимодействии вспомогательного хирального реагента ЬУ с двумя молями бутиллития образуется конформационно жесткий комплекс ЬУ1, который в реакции с беизальдегид ом дает оптически активный 1-фенил-пентанол. [c.686]

    Наиб, общий метод расщепления Р.-химический, при к-ром на Р. действуют оптически активным реагентом, в результате чего образуется новая пара в-в - диастереомеров. Последние м.б. разделены вследствие различия в их физ. св-вах. Хиральный реагент после разделения диастереомеров отщепляют. Напр., рацемич. (Л, 5)-1-фенилэтил-амин образует с природной (2Я. ЗЛ)-винпой к-той две диастереомерные соли [(й)-1-фенилэтиламин]-[(2Л, ЗЛ)-винная к-та] и [(5)-1-фенилэтиламип] [(2Л, ЗЛ)-винпая к-та], к-рые обладают разл. р-римостью в этаноле и м. б. разделены кристаллизацией. Своб. амин выделяют затем экстракцией диэтиловым эфиром из водного щелочного р-ра соли. [c.200]

    X. м. применяют как для анализа оптически активных соед. (напр., сложных стеровдных структур - промежуг. продуктов в синтезе важных гормональных препаратов, для к-рых стереохим. аспект имеет решающее значение), так и оптически неактивных. В последнем случае используют соответствующие хиральные реагенты, позволяющие превратить оптически неактивные анализируемые соед. в оптически активные, для к-рых эффект Коттона проявляется в доступной для измерения области. [c.277]

    Для стереоспецифического синтеза аминокислот с помощью хиральных реагентов имеются многочисленные возможности. Из них следует упомянуть асимметрическое гидрирование ненасыщенных соединений с хиральными катализаторами — фосфинами родия и рутения [71] или фосфиновыми лигандами, фиксированными на полимере [72], асимметрическое декарбокси-лирование спещ1фических комплексов малоната кобальта (III) при малоновом синтезе, переаминирование а-кетокислот с L-пролином в качестве хирального реагента и асимметрическое алкилирование шиффовых оснований [73, 74]. Практическое значение асимметрический синтез имеет в том случае, если он приводит к получению ценных, редких аминокислот, если хи-ральные реагенты не очень дороги или если их можно регенерировать. Проблематичны асимметрические синтезы, протекающие через циангидри-ны или гидантоины, так как при гидролизе приходится считаться с рацемизацией. Об асимметричном синтезе по методу Штрекера сообщается в работе [75]. Ниже приводится пример асимметрического алкилирования шиффова основания /ире/и-бутилового эфира глицина и гидроксипииаиоиа [76]. [c.47]

    В качестве хиральных реагентов для получения пригодных для хроматографии диастереомерных производных аминокислот используют оптически активные амиловый спирт как компонент этерификации для N-пентафтор-пропиониламинокислот [178] и а-хлоризовалерилхлорид как аш1лирующий компонент для эфиров аминокислот [179]. Применение продажных стеклянных капилляров с готовой неподвижной фазой обеспечивает оптимальное разделение большинства аминокислот. [c.64]

    Изучались и реакции альдольного присоединения между а.шральными реагентами в хиральных растворителях [157— 159], в которых была достигнута лишь невысокая степень индуцированной асимметрии (энантиомерный избыток 2—22%) [158]. При альдольной конденсации хиральных реагентов в хиральных растворителях наблюдалось двукратное повышение стереоселективности [159]. Обычно, однако, индуцированная хиральными растворителями (или сорастворителями) стереоселективность невысока [157]. [c.102]

    Следовательно, для достижения более высокой диастереоселективности необходимо обеспечить большую структурную дифференциацию диаствреоморфных активированных комплексов, например, путем непосредственного ковалентного связывания с хиральными реагентами. [c.366]

    Во-первых, чрезвычайно важно знать оптическую чистоту модифицируемого агента. Только если она соответствует 100%, результаты аналитического разделения непосредственно отвечают энанти-омерному составу. Причина этого показана на схеме 4.2. Если мы разделяем энантиомеры соединения А в виде диастереомерных производных (I и 11), полученных реакцией с хиральным реагентом (-1-)-В, загрязнение его энантиомером (-)-В является недопустимым. Ведь продукты, получаемые в результате реакции с (-)-В (III и IV), образуют энантиомерные пары с основными продуктами (IV с I и III с II) и таким образом вносят добавочный вклад в соответствующие пики. Возможный результат такого вклада лучще всего показать на примере. [c.59]

    Как уже упоминалось в разд. 7.1.1, углеводные биополимеры представляют собой полезный и довольно доступный исходный хиральный материал, который после превращения в очень простые производные может использоваться для получения селективных сорбентов для энантиоразделений. Синтетические хиральные полимеры, однако, нельзя получать без хирального реагента или катализатора. В первом случае проводится хиральная модификация подходящего мономера, и продукт далее полимеризуется с образованием полимерной сетки, имеющей хиральные заместители (рис. 7.6, а). Во втором случае мономер полимеризуется под влиянием хирального катализатора, в результате чего образуется оптически активный полимер, поскольку стереорегулярное влияние катализатора вызывает образование изотактической полимерной структуры определенной предпочтительной спиральности (рис. 7.6, б). Здесь хиральность присуща всей молекуле полимера, т. е. она обусловлена только спиральной структурой. [c.122]

    Поскольку энантиомеры являются стереоизомерами, следовало бы ожидать, что они имеют различные свойства. Соответствующие различия заметны, однако исключительно в хиральной среде. Так, оба энан-тиомера имеют одинаковую свободную стандартную энтальпию образования / 029з (см. раздел 1.5.3,1) и совпадающие физические свойства, такие как температуры плавления и кипения, показатели преломления, нлотность, ИК- и УФ-спектры и т.д., а также одинаковую реакционно-способность по отношению к ахиральным реагентам. Однако энантиомеры различным образом ведут себя по отношению к хиральным реагентам и по отношению к хиральным физическим воздействиям, таким как поляризованный свет. [c.91]

    В рассмотренных выше примерах вспомогательный хиральный элемент содержался в самом субстрате. Однако стереохи-мичвский результат реакции зависит не от симметрии одного лишь реагента, а от полной симметрии реагирующей системы. Поэтому при проведении асимметрического синтеза используются (1) хиральные субстраты, содержащие прохиральные группы, (2) хиральные реагенты (например, хиральные гидриды при гидрировании кратных связей), (3) хиральные катализаторы и [c.64]


Смотреть страницы где упоминается термин Хиральные реагенты: [c.204]    [c.175]    [c.218]    [c.195]    [c.196]    [c.198]    [c.344]    [c.260]    [c.62]    [c.603]    [c.671]    [c.680]    [c.99]    [c.313]    [c.431]    [c.611]    [c.213]    [c.67]    [c.50]    [c.9]    [c.66]    [c.71]   
Избранные проблемы стереохимии (1970) -- [ c.19 , c.21 , c.29 , c.291 , c.296 , c.297 ]




ПОИСК





Смотрите так же термины и статьи:

Хиральность



© 2025 chem21.info Реклама на сайте