Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Ионный обмен водорода

    В целом адсорбция ионов на поверхности окислов достаточно сложна, так как она сопровождается целым рядом возможных процессов. Рассмотрим сначала ионный обмен. Обмен катионов можно осуществить двумя методами. Если поверхность окисла покрыта только протонами, т, е. не содержит адсорбированных ионов другого металла, адсорбцию проводят при достаточно высоком pH раствора, в котором находится адсорбируемый катион, так что поверхность обменивает ионы водорода на ионы металла. Эту весьма важную для адсорбции катионов реакцию в общем виде можно записать следующим образом  [c.43]


    Если подобран маскирующий реагент, то способ устранения его мешающего влияния на анализ следует предпочесть более сложным способам разделения элементов (осаждению, ионному обмену, экстракции и др.). В качестве маскирующих реагентов применяют винную, лимонную, щавелевую кислоты или их соли, комплексон 1П и т. д. Например, при определении содержания титана с пероксидом водорода в присутствии больших количеств железа последнее связывают в бесцветный комплекс фосфорной кислотой [Ее(Р04)г] . [c.48]

    Обмен анионов с ионами замещенного водорода. На ионообменных смолах могут протекать процессы катионного обмена [c.339]

    Если по законам квантовой механики рассчитать энергию взаимодействия двух атомов V так, как мы сделали это для иона молекулы водорода, то возникнут два члена. Электростатическое взаимодействие двух атомов водорода обозначим С , а обменное (называемое обменным интегралом) — буквой А  [c.473]

    Способность химических реагентов эффективно воздействовать lia структурно-механические свойства шламов основана на явлении ионного обмена. Частицы минералов благодаря наличию на их поверхности электрических зарядов сорбируют из окружающей среды катионы и анионы, которые недостаточно прочно удерживаются на поверхности частиц и при определенных условиях обмениваются на другие ионы. Наибольшая склонность к ионному обмену характерна для минералов глин. Причиной катионного обмена могут быть разорванные химические связи по краям кремнезем-глиноземистых слоев, несбалансированные заряды в результате замещения ионов кремния и алюминия ионами более низкой валентности, а также замещение водорода гидроксильных групп катионом, который может вступать в обменные реакции замещения. [c.280]

    Наиболее полярным из обычных растворителей является вода. Как уже известно из предыдущего (V 4), действие ее на внутримолекулярные связи сказывается настолько сильно, что многие полярные молекулы распадаются на ионы, обменные реакции между которыми протекают практически моментально. Даже в виде следов вода оказывается необыкновенно активным и разносторонним катализатором. Например, при полном ее отсутствии хлор не действует на металлы, фтористый водород не разъедает стекло, натрий и фосфор не окисляются на воздухе и т. д. Подобным же образом следы водяного пара сильно катализируют некоторые реакции разложения (СЬО и др.). Можно сказать, что если бы мы изучали вещества при полном отсутствии воды, то наши представления о химических свойствах многих элементов и соединений были бы совершенно иными, чем в настоящее время. [c.346]


    Ионным обменом для включения необходимых катионов в кристаллы молекулярных сит с последующим восстановлением катиона до металла водородом. [c.221]

    Поскольку промышленные сточные воды, помимо указанных выше, содержат и другие примеси, то их обработка включает дополнительные процессы. Для удаления токсичных металлов (РЬ, Си, 2п, Нд, Сг, N1, Аз) используют процессы осаждения, ионного обмена и экстракции. Для удаления солей, содержащихся в промышленных сточных водах, используют ионный обмен и электродиализ. Суспензию масла или красок разрушают пропусканием электрического тока. Образующийся при этом водород увлекает диспергированные вещества на поверхность, где они легко собираются. [c.195]

    Электродиализ может в конечном счете заменять ионный обмен при приготовлении коммерческих золей, так как щелочь, кислород и водород можно регенерировать, и, следовательно, необходимо удалять гораздо меньшее количество отработанной воды. [c.450]

    Ионный обмен (пат. США 3013982). Обменом катионов Ка" на ионы других элементов или Н" можно ввести в цеолит-ную структуру металлы, например N1 и Р1. Никель-обменный цеолит (или цеолит, содержащий комплексные катионы) может быть восстановлен водородом примерно при 500 °С до металлического никеля. При этом наряду с атомами никеля образуются протоны, которые компенсируют вместо ионов N1 + отрицательные заряды алюмосиликатного скелета  [c.173]

    Существует огромное множество неорганических веществ, которые, как кажется с первого взгляда, могли бы выполнять функции ионообменников в определенных экстремальных условиях. К ним относятся прежде всего многочисленные природные минералы с силикатным скелетом, включающие в свой состав наряду с такими типичными для них катионами, как алюминий, кальций, железо, магний и т. д.-, катионы щелочных металлов, чаще всего натрия и калия, наиболее способные к ионному обмену. Не меньшее значение имеют силикаты, в которых способные к обмену ионы водорода находятся в форме гидроксильных групп или ионов гидроксония. [c.5]

    Из данных по изучению химических свойств фосфата циркония и его инфракрасных спектров следует, что в ионном обмене на фосфате циркония участвуют атомы водорода кислых фосфатных групп, выполняющие роль, аналогичную роли сульфогрупп в сильно- [c.137]

    Для ионообменной хроматографии используют искусственные смолы, способные к ионному обмену катиониты — способные к обмену катионов адсорбенты, содержащие функциональные группы—сульфогруппы, карбоксильные, гидроксильные н другие с подвижным ионом водорода аниониты — способные к обмену анионов, содержат вторичные или третичные аминогруппы с подвижными ионами гидроксила. [c.277]

    Разнообразные применения имеет ионный обмен в технике. В качестве примера можно привести процессы умягчения и обессоливания воды. Умягчение воды — замену ионов кальция на ионы натрия можно проводить с помощью высокопористых минералов алюмосиликатов цеолитного типа с общей формулой А120з-т 102-пН20, в которых часть ионов водорода может заменяться на ионы металлов. Используются как природные минералы этого типа, так и синтетические (пермутит). Обозначая условно единичную ионообменную группу через ЫаП, реакцию ионного обмена можно представить в виде [c.213]

    В торфяных системах полная емкость обмена ( сбм складывается из емкости поглощенного комплекса металлических ионов и емкости, запятой обменным водородом 6 н+, т. е. [c.216]

    В последнее время для окислительных процессов используют новые катализаторы-на основе цеолитов [63, 64]. Для введения металлов в цеолиты существуют различные способы пропитка, адсорбция из газовой фазы, ионный обмен и др. При этом состояние металлов в цеолитах в зависимости от способа введения различно в одних случаях цеолит служит только носителем, а в других-металл замещает ион водорода гидроксильных групп цеолитов и таким образом входит в его структуру. После введения металлов в цеолиты системы подвергают восстановлению водородом, и из различных металлсодержащих соединений образуются частицы металла. На практике обьино стремятся получить цеолитные катализаторы с небольшим количеством благородного металла это достигается методом ионного обмена, но распределение металла в цеолите получается неравномерным. Особенно это заметно для гранулированных цеолитов. [c.69]

    В интервале pH от 2 до О линейная зависимость нарушается, так же как и на электродах из отожженного металла с частично удаленным водородом (см. рис. 129). Это указывает на то, что никель начинает пр1и1нимать участие в ИОННОМ обмене. [c.49]

    Ионный обмен техничеоки осуществляют в колонках, наполненных зернами ионообменников. Сверху подают очищаемый раствор. Ионообменник, потерявший реакционную способность, воостанавливает ее по сле обработки водными растворами кислот или олей щелочных металлов, при этом связи замещаются, ионами Н+, NH+, Na+, К+. В раствор переходят вытесненные ионы, замещаемые ионами водорода или щелочных металлов. [c.579]


    Подставляя уравнение (ХХП.9) в (ХХП.8), мы убедимся, что отвечает равенство = С , з и — равенство Су = — Сц. В расчете, подобном проведенному Унсольдом, учитывалось лишь кулоновское взаимодействие д, что приводило к отталкиванию п1ютона от атома водорода. Устойчивость иона молекулы водорода обусловлена обменным интегралом р, описывающим взаимодействие охватывающего ядра, обладающего эллиптической симметрией, облака с протонами. [c.472]

    Коэффициенты диффузии обменивающихся ионов могут значительно различаться. Например, экспериментально установлено, что когда процесс лимитируется внутренней диффузией, обмен между Н-катионитом и находящимся в растворе ионом металла идет быстрее, чем между Ме-катионитом и ионом водорода, коэффициент диффузии которого больше, чем иона металла. Но при этом, несмотря на различие коэффициентов диффузии отдельных ионов, в макроско-пическйх масштабах разделения зарядов при ионном обмене не происходит, электрические поля ионов влияют на их взаимное перемещение, система и в жидкой, и в твердой фазах остается электроней-тральной, а скорость процесса определяется скоростью взаимной диффузии ионов. [c.308]

    Эта структура предполагает цепочечное строение связь между атомами циркония через оксомостики и фосфатные группы наличие кислых фосфатных групп. Она достаточно хорошо объясняет свойства фосфатов, способность их к ионному обмену. При ионном обмене на катионы металлов замещается водород фосфатных групп после их насыщения в обмене могут принимать участие и гидроксогруппы. Фосфаты обладают высокой обменной емкостью (до 6 мг-экв/г). В сильнощелочной среде фосфатные группы замещаются на гидроксогруппы, что приводит к изменению состава. Не исключено, что фосфаты имеют циклическое строение, а связь между атомами циркония осуществляется и через гидроксомостики. [c.289]

    Аналогично способу электролиза с фильтрующей диафрагмой, на катоде электролизера с ионе обменной мембраной выделяется водород, а в катодном пространстве накапливается щелочь, на аноде происходит выделениг хлора. Вследствие миграции ионов 0Н через катионитовук> мембрану из катодного пространства в анодное выход щелочи по току ниже 100%, а в а> одном пространстве появляется гипохлорит и хлорат (стр. 147). Для нейтрализации щелочи, проникающей через мембрану в анолит, в систему циркуляции анолита вводят соляную кислоту. [c.172]

    Протон (от греч. protos — первый) — устойчивая элементарная"] (фундаментальная) частица с единичным положительным электрическим зарядом П. в 1863 раза тяжелее электрона протоны образуют вместе с нейтронами ядра всех химических элементов. Число П. в атомном ядре определяет заряд ядра (2) и место соответствующего элемента в периодич. системе Д. И. Менделеева. Наиболее легкое ядро — ядро изотопа водорода (протия), представляет собой один протон. Поскольку атом водорода имеет только один электрон, его ионизация приводит к образованию положительного иона Н+, который в растворах гидратирован (НзО+). Этот ион играет важную роль в кислотно-основных равновесиях (кислота протон + + основание), в ионном обмене, в электролитической диссоциации и др. Протонизация — присоединение протона Н+. [c.109]

    Влияние соотношения концентрации ионов щелочных металлов, водорода и катионов цветных металлов при ионном обмене на сильнокислотных катионитах не очень велико. Это видно из данных табл. 18 и 19, где показано влияние соотношения ионов водорода и цинка при извлечении сульфокатионитом КУ-2 цинка из растворов, содержащих смеси сульфата цинка и серной кислоты с постоянной суммарной концентрацией 15,2 мг-экв/л и влияние соотношения ионов натрия и цинка в растворе смеси сульфатов цинка и натрия той же суммарной концентрации. Зависимость используемой емкости сульфокатионита КУ-2 от соотношения всех трех компонентор (НагЗО- , Нг504, 2п504) при общей концентрации раствора 15,2 мг-экв л видна из данных табл. 20. [c.136]

    Скорость депротонирования С—Н-кислоты (/ i в табл. 2.7.19 к- UIносится к обратной реакции) в определенных условиях мож> но использовать как меру кинетической кислотности данной кислоты и устойчивости карбаниона, принимая, что между структурой переходного состояния депротонирования и структурой образующегося карбаниона существует близкая аналогия. К реакциям, скорость которых определяется скоростью депротонирования, относятся катализируемое основаниями галогенирование и изотопный обмен водорода. Скорости подобных реакций действительно представляют собой количественную меру кинетической кислотности, если только внутренняя рекомбинация ионных пар, включающих карбанион, в исходную С—Н-кислоту не существенна и на скорость не влияют другие специальные факторы, например пространственные эффекты в переходном состоянии. Иногда кинетическая кислотность является единственным способом оценки устойчивости карбанионов, например в случае очень слабых С—Н-кислот типа бензола или алканов. Обычно для кинетической и термодинамической кислотностей наблюдается линейное соотношение свободных энергий, и поэтому скорость депротонирования можно использовать для предсказания термодинамической кислотности. Таким путем были определены приведенные ниже величины рКа циклогептатриен 36, бензол 37, циклопропан 39, метан 40, циклогексан 45. Стабилизованные нитрогруппами карбанионы в основном образуются при депротонировании медленнее, чем это можно бы ожидать на основании величин рКл. Обычно это приписывают большой перестройке распределения электронов между переходным состоянием депротонирования и образующимся анионом [56ж]. [c.547]

    Показано, что реакции р-отщепления (2-бромэтил)-бен-зола гидроокисью-Н натрия в метиловом спирте-Н и воде-Н а также 1-бром-2-этилбутана-2-Н2 амидом калия в жидком аммиаке не сопровождаются соответственно обменом водорода на дейтерий или дейтерия на водород. Эти данные подтверждают бимолекулярный механизм Е2, согласно которому протон (или дейтерон) и ион галоида отщепляются одновременно. [c.323]

    Как было указано выше, возможность образования связи между атомами водорода в синглетном спиновом состоянии (антипараллельные спины) и их отталкивание в триплетном спиновом состоянии обусловлены разным характером корреляции в движении электронов в этих состояниях. Хотя эта корреляция зависит от взаи1цной ориентации спинов электронов, она не обусловлена непосредственным взаимодействием магнитных моментов электронов. Энергия такого взаимодействия намного меньше обменной энергии. Для образования химической связи необходимо, чтобы координатная функция была симметричной относительно перестановки пространственных координат электронов. В этом случае повышается вероятность пребывания электронов между ядрами, что и приводит к устойчивой молекуле. О том, что непосредственное взаимодействие между спинами двух электронов практически не играет роли в образовании химической связи, свидетельствует возможность образования такой связи только одним электроном. Такой случай иаблюдается в ионе молекулы водорода Н , состоящем из двух ядер с зарядом 2 = 1 и одного электрона. В адиабатическом приближении, т. е. при фиксированном расстоянии / между ядрами, электрон движется в аксиальном поле, создаваемом обоими ядрами Л и 5. В этом приближении оператор Гамильтона [c.626]

    Катиониты содержат активные функциональные группы —50зН, —СООН или —ОН (фенольная группа), которые прочно связаны со скелетом смолы. Подвижными, т.е. обменными, остаются только проти-воионы ионы водорода этих групп (Н — форма катионита) или заместившие их катионы (солевая форма). У анионитов обменными являются гидроксид-ионы или анионы кислот. Из смол отечественного производства чаще всего применяют катиониты КУ-1, КУ-2, КУ-23 и аниониты ЭДЭ-10П, АВ-16, АВ-17, АВ-31. Ионный обмен подчиняется закону действующих масс и происходит в эквивалентных количествах (см гл. VI, 3). [c.424]


Смотреть страницы где упоминается термин Ионный обмен водорода: [c.63]    [c.78]    [c.422]    [c.256]    [c.608]    [c.79]    [c.211]    [c.800]    [c.136]    [c.159]    [c.291]    [c.136]    [c.159]   
Лабораторное руководство по хроматографическим и смежным методам Часть 2 (1982) -- [ c.13 ]




ПОИСК





Смотрите так же термины и статьи:

Водорода ионы

Водород—углерод связь, обмен с ионом водорода

Ионный обмен

Ионный обмен и иониты

Ионный обмен между металлами и водородом

Обмен ионов

Обменная емкость ионов водорода III

Оксония ионы обмен водорода

Равновесие обмена ионов с участием противоионов водорода или гидроксила

Реакции изотопного обмена водорода аренониевых ионов и их предшественников

Триметиламин обмен с ионами водорода

Фумаровая кислота, обмен водорода, связанного с углеродом, с ионами водорода



© 2025 chem21.info Реклама на сайте