Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Упорядоченность структур III

    Такой вывод косвенно подтверждается слабо выраженным и почти линейным уменьшением диэлектрической проницаемости раствора при увеличении концентрации электролита вплоть до 0,5—1,0 М растворов. Дальнейшее повышение концентрации электролита приводит к некоторому замедлению спада диэлектрической проницаемости и отклонению экспериментальной кривой от прямой линии в сторону больших величин диэлектрической проницаемости. Предполагается, что такой ход кривых е — с обусловлен наложением эффектов упорядочения структуры воды и ее разрушения под действием введенных ионов. Если рассматривать воду как систему, состоящую из квазикристаллических образований, то при введении первых порций электролита наиболее заметно проявляется их упорядочивающее действие — образование внутреннего сольватного (замороженного) слоя молекул воды, частичная ориентация молекул воды во внешнем сольватном слое, уменьшение свободного объема жидкости. Все эти эффекты охватывают главным образом преобладающую аморфную форму воды, связь между молекулами в которой слабее, чем в квазикристаллических образованиях, и приводят к уменьшению энтропии. При возрастании концентрации электролита, когда значительная часть аморфной воды становится [c.64]


    Возникающие в процессе охлаждения твердых растворов более упорядоченные структуры, называются сверхструктурами. [c.414]

    Жидкое состояние характеризуется плотной молекулярной упаковкой. Свободный объем в жидкости много меньше свободного объема в газах. Для многих жидкостей характерно наличие областей упорядоченной структуры. Так, для воды характерным является наличие областей с льдоподобным каркасом, пустоты которого заполнены молекулами воды. Области упорядоченной структуры возникают и разрушаются в результате теплового движения молекул. Средняя кинетическая энергия поступательного движения молекул в жидкости, как и в газах, равна ЯТ, следовательно, и средние скорости поступательного движения молекул в жидкости равны средним скоростям движения таких же молекул в газовом состоянии при той же температуре. [c.592]

    Изучение рассеяния рентгеновского излучения жидкостями приводит, таким образом, к представлению о наличии в жидкости ближнего порядка в расположении молекул. Каждая молекула окружена соседями, которые расположены вокруг нее почти так же, как в кристалле того же вещества, однако в следующем, втором слое молекул расположение (по отношению к исходной центральной молекуле) уже значительно отклоняется от кристаллического, а в следующих слоях подобие упорядоченной структуры исчезает. При этом надо помнить о существенном отличии жидкости от кристалла, заключающемся в [c.161]

    Если же полученные кристаллы термодинамически устойчивы, то дальнейшие превращения возможны лишь а результате изменения условий существования твердой фазы, например при дальнейшем понижении температуры или при изменении давления. Аналогичная картина наблюдается и в случае твердых растворов. При быстром охлаждении расплавов получаются термодинамически неустойчивые образования неоднородной структуры, которые переходят в термодинамически устойчивую однородную форму после достаточной выдержки прн той же температуре. Но в твердых растворах возможен и другой процесс дальнейшего упорядочения структуры. Вполне однородный в статистическом смысле и термодинамически устойчивый твердый раствор иногда способен при дальнейшем охлаждении изменить свою кристаллическую структуру, образуя уже иную, но опять однофазную однородную систему. Пример подобного процесса встречается при охлаждении сплавов меди и платины различных составов (рис. XIV, 13). [c.413]


    Алмаз и серое олово обладают трехмерной решеткой со связями ковалентного типа, расположенными в тетраэдрической ориентации. Графит со своими двумерными слоями атомов и белое олово с металлической упаковкой атомов представляют собой менее упорядоченные структуры, чем обе указанные выше алмазоподобные структуры, и поэтому их энтропии соответственно выше. [c.63]

    Напомним, что 1 энтр. ед. (энтропийная единица) = 1 Дж-К . ] Такие теплота и энтропия требуются, чтобы разрушить упорядоченную структуру кристаллического льда и позволить молекулам скользить одна вдоль другой. Сравним эти значения с соответствующими теплотой и энтропией испарения, когда молекулы жидкости действительно отрываются одна от другой, образуя газ. Для воды при 298 К [c.122]

    Такая ориентация может иметь место и при хемосорбции окислителя с последующим образованием соединения на поверхности металла, когда реакция идет с такой (достаточно малой) скоростью, что образующееся соединение имеет возможность ориентироваться в соответствии с подложкой. Это облегчает протекание окисления на первых его стадиях. Часто такое упорядочение структуры образующегося соединения сопровождается заметным изменением параметров его решетки. [c.42]

    При охлаждении фракций твердых углеводородов, не образующих карбамидные комплексы (см. рис. 32), фиксируется температурная точка, ниже которой отмечается излом рефрактометрической кривой и кривой интенсивности ИК-полосы при 720 см- и не наблюдается показатель преломления, т. е. точка излома представляет собой точку исчезновения жидкой фазы (расплава). Наличие точки излома рефрактометрической кривой, а не разрыва, как в случае углеводородов, образующих комплекс, показывает, что в точке исчезновения расплава не происходит изменения объема и состояния обеих фаз в этой точке совпадают. Смеси углеводородов, образующих карбамидный комплекс, характеризуются упорядоченной структурой твердых фаз, образованием в процессе затвердевания гексагональной структуры и затем после полиморфного перехода — структуры с ромбической подъячейкой. Смеси углеводородов, не образующих ком плекса, претерпевают своеобразные фазовые превращения они образуют из расплава стеклоподобную фазу, превращающуюся затем в твердую фазу с ромбической подъячейкой. Для них характерно сохранение значительной области температур существования молекул с неупорядоченной конфигурацией алкильных цепей. Эти исследования [c.125]

    Для оценки степени чувствительности энтропии растворения к структуре укажем, что для растворения аргона в воде А сольв = —22 э. е., а эффект ограничения неупорядоченности вследствие уменьшения объема в результате растворения газа в жидкости составляет 12 э. е. Следовательно, разница между этими величинами (—10 9. е.) приходится на упорядочение структуры растворителя. [c.136]

    Особенностью цеолитов как адсорбентов является строго упорядоченная структура пор. Различные формы цеолитов могут иметь отличающиеся между собой по размерам входные окна и адсорбционные ячейки. Ниже приведены основные геометрические характеристики наиболее часто применяемых в промышленности цеолитов, причем при подсчете учитывался только объем больших ячеек  [c.28]

    В конденсированных телах полиэдры являются основной структурной единицей для создания каркаса решетки. Они входят в состав ансамблей полиэдров и элементарной ячейки. Ансамбли полиэдров, как правило, имеют аморфную структуру и создают решетку аморфных тел (синтетические алюмосиликаты, жидкие вещества), они также входят в состав элементарных ячеек, если они имеют упорядоченную структуру. Твердое тело с кристаллической решеткой построено из сочетания элементарных ячеек заданной сингонии и состава. [c.249]

    При охлаждении мыльного расплава протекают одновременно два процесса зарождение и формирование кристаллов (волокон) и связывание их друг с другом с образованием структурного каркаса смазки. Размеры и форма волокон зависят от условий кристаллизации. прежде всего от исходной температуры охлаждения и его скорости. Быстрое охлаждение способствует образованию мелких, а медленное — крупных волокон загустителя. Изотермическое охлаждение (постоянная температура 100—150 °С) приводит к образованию однородных по размерам кристаллов, что способствует получению смазки с наиболее упорядоченной, структурой. [c.299]

    Исследования путем дифракции рентгеновских лучей показывают в жирных углях и в большинстве низкотемпературных полукоксов упорядоченную структуру с периодичностью около 22 А, которую весьма трудно объяснить и которая, возможно, зависит от определенной характеристики микропористости. [c.129]

    Десорбцию при температурах 200—400 °С осуществляют для выделения поглощенных веществ из цеолитов (синтетических и природных), обладающих строго упорядоченной структурой пор и значительными адсорбционными силами. В качестве десорбирующего агента в этом случае используют нагретые воздух илк инертный газ (чаще всего N2). [c.84]


    Для исследованных моделей нефти, имеющих особую граничную упругость, наблюдается зависимость тангенса угла механических потерь (tp ф) от толщины пленки с уменьшением толщины слоя тангенс уменьшается. Из рис. 60 видно, что при приближе-иии к твердой фазе тангенс угла механических потерь быстро уменьшается и в области /хгр его значения остаются более или менее постоянными. Причем с увеличением концентрации асфальтенов при прочих равных условиях значение уменьшается, что свидетельствует об уменьшении диссипативных потерь вследствие упорядоченности структуры под влиянием твердой поверхности. Весьма низкое значение tg ф, равное приблизительно 0,2, связано с тем, что асфальтены имеют довольно крупные молекулы [139], а это приводит к резкому увеличению вязкости нефти в граничном слое. [c.118]

    Необходимость разработки многочисленных, столь не сходных между собой моделей макромолекул вызвана не только и не столько расхождениями взглядов различных исследователей на структуру асфальтенов, сколько невозможностью описать единой моделью особенности ВМС различного происхождения. Так, если слоистая модель удовлетворительно согласуется с результатами анализа упоминавшихся выше нефтей [395, 1030—10351, то крайне сомнительно соответствие ее реальной макроструктуре асфальтенов из таджикской нефти (Кичик-Бель) [396], очень слабо метаморфизован-ной,смолистой, сернистой,высокоцикличной. Кичикбель-ские асфальтены, не выделяясь по средней молекулярной массе, обладают очень большими размерами изолированных частиц (см. табл. 7.2) и в рентгеновских спектрах не дают сколько-нибудь четко выраженных пиков отражения, характерных для упорядоченных структур (см. рис. 7.1, кривая 2). Этп ас-фальтепы совершенно не проявляют способности к набуханию при растворении, хотя именно такое поведение типично для слоистых макрочастиц. Макромолекулы этих ВМС вероятно, должны иметь монослойное строение. [c.188]

    В отличие от кристаллических пористых тел избыточная свободная энергия аморфных структур определяется лишь величиной удельной поверхности. Поэтому спеканию аморфных тел не предшествуют процессы упорядочения структуры [120]. [c.54]

    Одной из причин возникновения горячих пятен являются, как показано экспериментально [4], флуктуации проницаемости неподвижного зернистого слоя, обусловленные свойствами частиц формировать нри хаотичной упаковке локальные ансамбли с более или менее упорядоченной структурой. Параметрически задавая распределение пористости в объеме слоя, мы имеем возможность численно исследовать воздействие флуктуаций пористости на процесс. В каждом из четырех слоев моделировались структурные неоднородности в верхней и нижней части с пористостью Ев = Е 0,3, 0,35, 0,45. Пористость в остальной части слоя 0,4. [c.63]

    Твердое тело характеризуется значительно более упорядоченной структурой по сравнению с газами и жидкостями. По этой причине даже расчеты простых свойств, таких, как плотность или теплопроводность, требуют знания других характеристик, которые мо1-ут быть известны с еще меньшей вероятностью (например, постоянные решетки кристаллов), чем сами эти свойства. [c.188]

    Прокаливание нефтяного кокса проводптс5Г с целью придания ему высокой плотности, низкого электрического сопротивления, малой реакционной способности и достаточной механической прочности. Прокаленный кокс используют в цветной металлургии для изготовления анодов, катодов и графитировапных электродов. Сущность прокаливания заключается в нагревании кокса до температуры, обеспечивающей глубокое протекание процесса дегидрирования и образование упорядоченной структуры углеродистого остатка. Установки прокаливания нефтяного кокса целесообразно строить на месте его производства н комбинировать с установками замедленного коксования. [c.189]

    Касаточкин считает, что трехмерно упорядоченная структура отсутствует не только в каменных углях, но и в антраците и коксе. По экспериментальным данным он сделал вывод, что атомы углерода в элементарных структурных единицах угля упорядочены только в двух направлениях, образуя плоские гексагональные ароматические конденсированные сетки. Касаточкин предложил пространственную модель строения витреновых веществ (рис. 79) [9]. [c.217]

    Одним из основных показателей степени структурирования, или, другими словами, степени упорядочения структуры кокса является пикнометрическая или истинная плотность. [c.35]

    Темпцжтура. Поскольку энергии активации отдельных реакций термолиза различаются между собой весьма существенно, то температура как параметр управления процессом позволяет обеспечить не только требуемую скорость термолиза, но и регулировать соотношение между скоростями распада и уплотнения, а также, что особенно важно, между скоростями реакций поликонденсацни, тем самым меняя свойства фаз и условия кристаллизации мезофазы. При этом регулированием продолжительности термолиза представляется возможным обрывать на требуемой стадии "химическую эволюцию в зависимости от целевого назначения процесса. Для получения кокса с лучшей упорядоченностью структуры коксования сырья целесообразно проводить при оптимальной температуре. При пониженных температурах из-за малой скорости реакций деструкции в продуктах термолиза будут преобладать нафтено-ароматические структуры с короткими алкильными цепями, которые препятствуют дальнейшим реакциям уплотнения и форхшрованию мезофазы. При температурах выше оптимальной скорости реакций деструкции и поликонденсации резко возрастают. Вследствие мгновенного образования большого числа центров кристаллизации коксующийся слой быстро теряет пластичность, в результате чего образуется дисперсная система с преобладанием мелких кристаллов. Возникающие при этом сшивки и связи между соседними кристаллами затрудняют перемещение и рост ароматических структур. Более упорядоченная структура кокса получается при средних (оптимальных) температурах коксования ( 480 С), когда скорости реакций деструкции и уплотнения соизмеримы со скоростью роста мезофазы. Коксующийся слой при этом более длительное время остается пластичным, что способствует формированию крупных сфер мезофазы и более совершенных кристаллитов кокса. [c.63]

    Возможные типы регулярных укладок подробно исследовали в связи с их аналогией упорядоченному расположению атомов или ионов в кристаллической решетке [5]. Так, 71,ля простой кубической укладки координационное число Nk=.Q (4 соседа в горизонтальной плоскости и по одному сверху и снизу) порозность е = 0,476 расстояние между параллельными плоскостями, проходящими через центры шаров, равно d максимальный просвет (живое сечение) в плоскости соприкосновения шаров соседних рядов ()max = 1, а минимальный — в плоскости, проходящей через их центры, — tfmin = 0,214. При максимально плотной гексагональной упаковке Nk = 12 (6 соседей в вершинах правильного шестиугольника в горизонтальной плоскости и по три сверху и снизу в промежутках между шарами этой плоскости) порозность е = 0,2595 расстояние между соседними плоскостями 0,707 просветы ifmax = 0,349 и ifmin = 0,214. Возможны и другие упорядоченные структуры с промежуточными значениями е и четными координационными числами А/к = 8, 10 и 12. Комбинированные расположения соседних плоскостей могут давать упорядоченные упаковки с промежуточными, нечетными значениями iVk = 5, 7, 9 и 11. При более рыхлых расположениях без непосредственного контакта шаров одного горизонтального ряда возможна, например, упаковка типа кристаллической решетки алмаза [6] с Л/ к = 4 и s = 0,66. [c.8]

    В области низких температур кристаллы стехнеметрического состава стремятся к идеально упорядоченному состоянию, но часто не могут достигнуть его по кинетическим причинам. При повышении температуры отклонения от упорядоченной структуры увеличиваются, т. е. возрастает число дефектов кристаллической решетки. Самый факт существования кристаллов нестехиометри-ческого состава может быть истолкован, только если допустить в них наличие разупорядоченности. [c.35]

    В зависимости от вида перерабатываемого сырья коксования различают игольчаты и рядовой кокс. Для игольчатого кокса используют крекинг-остатки, полученные из малосерпи-стых дистиллятов. Рядовой кокс вырабатывают из крекированных гудронов и мазутов. Игольчатый кокс имеет более упорядоченную структуру и содержит значительно меньше зольных примесей и серы по сравнению с рядовым коксом. [c.190]

    Квазипланарпая пли гроздевидная, а точнее пространственно не упорядоченная структура характерна для молекул асфальтенов пз нефтей, не подвергшихся существенным катагенным изме-непням из-за сравнительно небольшого возраста и/или залегания на малых глубинах. В основе таких молекул лежат от одного до нескольких ароматических ядер, содержащих в среднем не более трех-четырех сконденсированных бензольных колец каждое значительно выше роль в молекуле нафтеновых циклов и алифатических цепей. Такие асфальтены почти не отличаются от смол той же нефти по фрагмептно.му составу, построены из таких же углеводородных скелетов и гетероатомных функций в близких средних пропорциях, но обладают большими молекулярными массами и габаритами молекул. В зависимости от состава углеводородной части нефти (чаще всего нафтенового) эти асфальтены могут давать в ней как истинные, так и коллоидные растворы. [c.200]

    Л.В. Радушкевичем предложено [1] в качестве классификационных признаков использовать механизм образования и общий характер структуры. По образованию можно выделить две большие группы системы роста и системы сложения. По принципу различия структуры можно выделить системы с четкой упорядоченностью структуры и не упорядоченные по структуре. К системам роста относятся активные угли, цеолиты, волокна целлюлозы и т.п. Подобные вещества характеризуются индивидуальной морфологией структуры. К структурам сложения можно отнести песок, волокнистые материалы фильтров, иониты, набивку колец Рашига, слои сорбентов и катализаторов, при этом рассматривается только внешнее межпоровое пространство, а пористостью отдельных элементов пренебрегают. Конечно, возможно сочетание систем роста и сложения. [c.23]

    Коэффициенты активности являются функциями состава и температуры. В настоящее время имеется большое число эмпирических и полуэмпирических соотношений для описания этой зависимости. К наиболее распространенным относятся уравнения Маргулеса, Ван Лаара, Вильсона, NRTL. Уравнения отличаются предпосылками, исходя из которых они получены, и областями применимости. Так, например, уравнение NRTL получено n xoflnliis Двухжидкостной упорядоченной структуры раствора, пригодное для описания как гомогенных, так и гетерогенных систем. Поскольку уравнения носят полуэмпирический характер, для определения входящих в него параметров требуются как минимум экспериментальные данные по бинарному равновесию. [c.20]

    Термодинамическая трактовка Я. И. Френкелем плотности, (или объема) ряда тел при переходе их из жидкого (аморфного) состояния в твердое (кристаллическое) может быть допущена в отношении нефтяных коксов при переходе их из аморфного состояния с неупорядоченной структурой в кристаллическое (графит) с упорядоченной структурой. При этом переходе происходит общее уменьшение теплосодержания (TdS) с временным возрастанием его в термодинамически неустойчя- [c.204]

    Пикнометрическая плотность по этиловому спирту отражает плотность упаковки кристаллов с учетом межкристаллитовых пор и структурных дефектов соответствующих размеров. Показатель du весьма важен как фактор суммарной оценки степени упорядочения структуры того или иного типа кокса. Меньшие чем 2,08 г/см значения пикнометрической плотности отражают неудовлетворительные структурные характеристики, в том числе повышенный коэффициент линейного термического расширения. [c.35]


Смотреть страницы где упоминается термин Упорядоченность структур III: [c.43]    [c.9]    [c.414]    [c.24]    [c.92]    [c.201]    [c.211]    [c.23]    [c.230]    [c.306]    [c.470]    [c.532]    [c.57]    [c.113]    [c.120]    [c.54]    [c.87]    [c.32]    [c.37]   
Пластификация поливинилхлорида (1975) -- [ c.220 , c.228 , c.229 , c.234 ]




ПОИСК







© 2025 chem21.info Реклама на сайте