Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Жидкости ближний порядок расположения

    Таким образом, особенность структуры жидкости состоит в том, что отсутствует дальний, но присутствует ближний порядок расположения частиц. Проявление ближнего порядка заключается в том, что молекулы, расположенные в первой сфере окружения данной молекулы, в большей мере задерживаются около нее и, таким образом, определяют некоторую упорядоченность. [c.164]


    Жидкое состояние. Структура жидкости. Жидкость имеет много общего с твердым состоянием. Компактное расположение частиц обусловливает высокую плотность и малую сжимаемость по сравнению с газами. Структура и внутреннее строение жидкостей и твердых тел во многом схожи и характеризуются упорядоченным расположением частиц. У кристаллических твердых тел упорядочение распространяется на огромное количество межатомных расстояний, т. е. ближний порядок переходит в дальний. В жидкости вследствие относительно высокой подвижности частиц упорядоченность ограничивается небольшими островками (агрегатами, или кластерами ), причем последние ориентированы друг относительно друга беспорядочно и часть пространства между ними остается не заполненной веществом. Эти образования нестабильны, связи в них постоянно разрушаются и вновь возникают. При этом происходит обмен частицами между соседними кластерами. Таким образом, в структурном отношении для жидкости характерно наличие лабильного (подвижного) равновесия, обусловленного относительной сво- [c.238]

    Следует отметить, что дальний и ближний порядок существует не только во взаимном расположении молекул или атомов, но и в ориентации их. По этому признаку отличают координационный порядок от ориентационного порядка, характерного для некоторых жидкостей и твердых тел. [c.11]

    В то же время структурные рентгенографические измерения указывают, что расстояние между противоположно заряженными ионами в расплаве остается практически таким же, как и в твердом веществе, или даже несколько уменьшается. Эти данные могут быть объяснены на основе предположения о наличии пустот, или дырок, в структуре ионного расплава. Сравнение структуры кристалла и соответствующей жидкости (рис. 27, й и б) показывает, что в жидкости сохраняется лишь ближний порядок расположения ионов, тогда как уже вторая координационная оболочка в значительной степени нарушается. Дырки в расплаве непрерывно перемещаются, образуются и исчезают, увеличиваются в размере или становятся небольшими. Средний размер радиуса дырок близок к среднему ионному радиусу. Дырки образуются вследствие теплового движения компонентов жидкости, а также возникновения вакансий при движении ионов из объема к поверхности при плавлении вещества. Распределение дырок играет важную роль в процессах переноса в расплавах. [c.89]

    Современное представление о механизме проводимости расплавленных солей было разработано Я- И. Френкелем при рассмотрении общей теории жидкого состояния. На основе рентгенографических исследований жидкостей было показано, что жидкое состояние — это состояние молекулярно упорядоченное. Жидкостям присущ ближний порядок расположения частиц, а не дальний, характерный для кристалла. Тепловое движение частиц в жидкостях резко отличается от теплового движения в газах и почти тождественно тепловому движению в кристаллах. [c.125]


    В жидком агрегатном состоянии, характеризующемся соизмеримостью энергии межмолекулярного взаимодействия и теплового движения молекул, наблюдается значительная плотность упаковки молекул, близкая к плотности упаковки молекул в твердых веществах, высокое сопротивление объемному сжатию и способность сохранять свою форму при определенных условиях, как, например, в условиях невесомости или при высокой дисперсности (каили тумана) и др. Жидкости легко принимают форму сосуда, в который их помещают. В пих наблюдается только ближний порядок расположения молекул. [c.72]

    Результаты расчета функции W(R) по этому уравнению для двух значений плотности приведены на рис. 1.5. Видно, что W R) проходит ряд максимумов и минимумов. По мере увеличения плотности все отчетливее проявляется характерный для жидкости ближний порядок в расположении частиц. Резкость пика слева от R = а обусловлена непроницаемостью шаров. [c.21]

    Жидкие и твердые вещества характеризуются определенной аморфной или кристаллической решеткой. Аморфная решетка характеризуется наличием близкого порядка в расположении атомов, ионов или молекул, а кристаллическая — близкого и дальнего порядка. Ближний порядок определяется тем, что в пределах радиуса ионов, атомов или молекул образуется устойчивая (для твердого тела) и малоустойчивая (жидкости), среднестатистического состава и строения пространственная фигура. В этой пространственной фигуре можно выделить центральную частицу (атом, ион, молекулу) и частицы из окружения, которые называют лигандами (ионы, атомы или молекулы). [c.248]

    Принимается, что дальнодействующих сил нет и, следовательно, можно ограничиться учетом взаимодействия между молекулами, расположенными в непосредственной близости друг от друга. Среднее состояние каждой молекулы считается зависящим только от состояния ближайших ее соседей. Тем самым в известной мере снимается необходимость учета различий в распределениях молекул, удаленных друг от друга. Отличия кристалла (дальний порядок) от жидкости (ближний порядок) в этой модели сравнительно несущественны. [c.317]

    На рис. 1.2 приведен результат такой обработки. Резул >-таты математического эксперимента (кривая 1) для различных значений чисел контактов Мк = Ъ 6 7 8 9 10 и 11 дают наиболее вероятное и среднее значение Л7к = 8 оно оказывается таким же, как и для регулярной ромбоэдрической укладки с е = 0,395. По-видимому, аналогично тому, как в реальной жидкости имеется так называемый ближний порядок в расположении соседних молекул, так и в нерегулярно насыпанном [c.9]

    Жидкое агрегатное состояние вещества по своему строению является промежуточным между газообразным, в котором частицы распределены в пространстве случайным образом, и твердым кристаллическим, в котором расположение частиц строго упорядочено. В расположении частиц жидкости наблюдается сложное сочетание элементов порядка и беспорядка. В отличие от газа в жидкости имеется так называемый ближний порядок, т. е. каждая частица окружена одинаковым числом ближайших соседних частиц — это число называется координационным числом. Наличие ближнего порядка в некоторой г ере роднит строение жидкостей со строением кристаллов (см. 8.3). Однако в отличие от кристаллов, в которых частицы совершают колебания около строго фиксированных положений, частицы жидкости способны к перемещению. [c.114]

    Жидкости и жидкие растворы обладают элементами кристаллической структуры они имеют промежуточную структуру между газом и твердым веществом. В жидкостях сохраняется так называемый ближний порядок в расположении молекул, который имеет статистический характер. Молекулы в жидкости, как и в газе, находятся в хаотическом тепловом движении. Каждая молекула окружена другими молекулами, находящимися в среднем во времени, на некоторых преимущественных расстояниях от нее. Для более удаленных молекул эти преимущественные расстояния постепенно исчезают. [c.203]

    Электролиз расплавленных солей проводится при температурах, незначительно превышающих температуру их кристаллизации. При таких температурах строение расплавов сохраняет некоторое сходство со строением твердых веществ. Такие свойства веществ, как объем и теплоемкость, упорядоченность кристаллической структуры и др., при плавлении изменяются несущественно. Это объясняется тем, что характер химической связи кристаллических веществ в твердом состоянии-—ионная, ковалентная, металлическая, — сохраняется и для веществ в расплавленном виде. Однако различие существует. При плавлении изменяется характер движения частиц. При повышении температуры степень неупорядоченности, имеющаяся в твердых кристаллах, возрастает и соответственно увеличивается электропроводность. Одновременно нарушается порядок расположения частиц в твердом веществе, т. е. уменьшается дальний порядок. При достижении температуры плавления дальний порядок полностью исчезает и вещество переходит в жидкость, но ближайшее окружение иона в жидком виде — так называемый ближний порядок — остается таким же, как и в твердом теле.. [c.465]


    Подобно твердому телу жидкость обладает определенной структурой. Например, структура жидкой воды напоминает структуру льда. Молекулы НаО также соединены друг с другом посредством водородных связей, и для большинства молекул сохраняется тетраэдрическое окружение. Однако в отличие от льда в жидкой воде проявляется лишь ближний порядок — за счет изгиба и растяжения водородных связей относительное расположение тетраэдрических комплексов оказывается неупорядоченным. Кроме того, вследствие перемещения молекул часть водородных связей разрывается и состав комплексов постоянно меняется. Непрерывное перемещение частиц определяет сильно выраженную самодиффузию жидкости и ее текучесть. [c.151]

    Работами Я. И. Френкеля, В. И. Данилова и других ученых доказано, что, во-первых, любой жидкости свойствен ближний порядок (определенная закономерность расположения частиц ближайшего окружения) и, во-вторых, структура жидкости, особенно вблизи температуры кристаллизации, сходна со структурой кристалла. [c.183]

    Ранее считалось, что молекулы в жидкости расположены беспорядочно по-отношению друг к другу. Однако рентгенографические исследования показали,, что в весьма малых областях жидкости имеется определенный порядок расположения молекул. Принято считать, что структура жидкости характеризуется ближним порядком в отличие от кристаллов, которым свойственен дальний порядок. При этом следует учитывать, что области с квазикристаллическим порядком в жидкости во времени не постоянны, — возникнув в одном месте и просуществовав очень недолго, они распадаются и образуются в другом месте. [c.55]

    Жидкое состояние вещества. В жидкостях (см. также гл. 8) наблюдается ближний порядок в расположении частиц. Вокруг каж- [c.128]

    Правильное расположение частиц в идеальном кристалле сохраняется во всей кристаллической решетке - в кристаллах существует дальний порядок. В жидкости упорядоченное расположение частиц в какой-то мере сохраняется только в ближайшем окружении рассматриваемой молекулы, т, е. для жидкостей характерен ближний порядок (более или менее нарушенный). В том случае, когда кристаллизация требует значительной переупаковки частиц, ее достижение затруднено. Это обусловливает возможность переохлаждения жидкости, т. е. охлаждения ее до температуры ниже температуры плавления. [c.167]

    В понимании особенностей жидкого состояния важнейшую роль сыграли начатые в 30-е гг. нашего столетия исследования рассеяния рентгеновских лучей жидкостями. Эти исследования показали, что в жидкостях расположение молекул в ближайшем окружении некоторой данной напоминает расположение их в кристалле. Имеется ближний порядок, хотя и не столь строгий, как в кристалле. Дальний же порядок, связанный с регулярностью структуры, в жидкостях отсутствует. Количественной характеристикой ближней упорядоченности является так называемая радиальная функция распределения. [c.198]

    В отличие от кристаллов, в жидкостях при практически той же средней плотности распределения вещества дальний порядок отсутствует. Есть только ближний порядок, т. е. правильность расположения молекул или атомов в непосредственной близости от данной центральной молекулы, резко нарушающаяся с расстоянием. Такой ближний порядок, как и дальний порядок в кристаллах, может быть количественно изучен с помощью современных методов структурного анализа — по дифракции рентгеновских лучей или электронных пучков с длиной волны, соизмеримой с межмолекулярными расстояниями. [c.171]

    В жидких растворах и в чистых жидкостях экспериментально установлено наличие ближнего порядка, т. е. строго определенного взаимного расположения частиц, ближайших по отношению к какой-либо частице, избранной за центральную. В зависимости от вида компонентов, составляющих раствор, ближний порядок охватывает пространство в один, два или три диаметра окружающих частиц. [c.80]

    Первая, являясь скалярной величиной, представляет собой количество энергии, требующееся для получения единицы новой поверхности. Поверхностное натяжение численно равно силе, необходимой для образования единицы площади поверхности. Обе эти величины равны друг другу для жидкости, но не равны для твердого тела. Причина такого различия состоит в том, что в жидкости упорядоченность расположения может иметь лишь ближний порядок, поэтому, когда жидкость подвергается действию усилий сдвига, напряжения, возникающие в ней, снимаются местной перегруппировкой атомов или молекул. С другой стороны, так как сила, вызывающая сдвиг, уменьшается при снижении скорости деформации, в пределе она равна нулю. [c.262]

    По структуре аморфные вещества подобны переохлажденным жидкостям с очень большой вязкостью. Расположение частиц в аморфном веществе характеризуется ближней упорядоченностью атомы в ближайшем окружении некоторого данного образуют своего рода координационные сферы можно говорить о радиусах первой и второй сфер, числах частиц в них. Но в аморфном теле указанные характеристики не фиксированы жестко и для различных атомов они несколько отличаются. Ближний порядок, таким образом, размыт. [c.194]

    Ближний порядок, т. е. способ расположения молекул в жидкостях, вблизи температуры плавления больше напоминает расположение частиц в решетке кристалла, чем в сильно сжатом газе. Это подтверждают прямые методы исследования структуры (рассеяние рентгеновских лучей в жидкостях и кристаллах) и косвенные данные. Например, для кристаллов и жидкостей вбли-9 — Полторак О. М. 257 [c.257]

    Жидкость — система динамическая. Атомы или молекулы, сохраняя ближний порядок во взаимном расположении, участвуют в тепловом движении, которое сложнее, чем в кристалле. Атомы и молекулы жидкости совершают колебания, как в кристаллах, но положения равновесия, относительно которых происходят эти колебания, не остаются фиксированными. Совершив некоторое число колебаний около одного положения равновесия, молекулы перемещаются в соседнее положение, обусловливая явление диффузии. [c.8]

    В твердых телах и жидкостях наблюдается ближний порядок, под которым понимают упорядоченное расположение частиц на расстояниях нескольких единиц нанометров (первая координационная сфера). В пределах первой координационной сферы наблюдается более сильное взаимодействие частиц. Кроме того, при переходе от пара к конденсированным системам, вследствие агрегации (объединения) большого количества частиц, вступают в силу законы больших чисел. Поэтому многие законы, строго соблюдаемые в пределах химии газообразного состояния, становятся приближенными и ограниченно применимыми к конденсированному состоянию. Так, например, один из основных стехиометрических законов — закон постоянства состава — применительно к конденсированным системам может быть использован с известными ограничениями. [c.238]

    Кристаллическое, стеклообразное, аморфное состояния. В подавляющем большинстве твердые тела представляют собой кристаллы. Если в структурном отношении жидкость характеризуется наличием только ближнего порядка, то в кристаллах ближний порядок переходит в дальний, т. е. упорядоченное расположение [c.303]

    Рассмотрим теперь изменения, происходящие при плавлении подобной кристаллической решетки или при растворении макромолекул. При плавлении обычных низкомолекулярных веществ исчезает дальний порядок, характеризующий кристаллическую решетку, а ближний порядок — расположение ближайших соседей вокруг данной молекулы— остается в жидкости практически тем же, что и в кристалле. Это и естественно, так как плотность жидкости мало отличается от плотности кристалла. При плавлении или растворении кристаллического полимера дальний порядок, очевидно, исчезает. Тело становится аморфным. Однако ближний порядок, определяемый взаимодействием ближайших соседей, сохраняется. Причем, что особенно интересно, в изолированной цепочке, окруженной растворителем, сохраняется тот же ближний порядок, что и в полимерном кристалле. Это означает, что соседние звенья одной цепи образуют как бы витки спирали той же структуры, которая была свойственна данному полимеру в кристаллической решетке. Правда, если мы попытаемся продолжить подобные отдельные витки дальше и отыс1 ать в макромолекуле структуру спирали, мы увидим, что это невозможно, так как регулярность структуры вдоль цепочки быстро нарушается и сходит на нет. [c.76]

    Характерный для жидкости вид функции ф (4), выраженной в виде отношения локальной плотности к средней плотности жидкости, в зависимости от межмолекулярного расстояния представлен на рис. 2.2. Как следует из этого рисунка, на расстоянии до 4—6 межмолекулярных расстояний в жидкостях наблюдается некоторая упорядоченность, выражаюнцаяся во флуктуациях плотности и аналогичная упорядоченности расположения атомов в кристаллической решетке твердого тела. Вместе с тем по рис. 2.2 можно установить, что под влиянием теплового движения ближний порядок, обусловленный межмолекулярными силами, нарушается и на расстояниях больше указанных полностью исчезает. Такая структура [c.29]

    Правильное расположение частиц в идеальном кристалле сохраняется во Ьсей кристаллической решетке — в кристаллах существует дальний порядок. В жидкости упорядоченное расположение частиц в какой-то мере сохраняется только в ближайшем окружении рассматриваемой молеку.лы, т. е. для жидкостей характерен ближний порядок (более или менее нарушенный). В там случае. [c.155]

    Еще не так давно было общепринятым рассматривать стекла как системы с вполне беспорядочным расположением частиц, как переохлажденные жидкости, у которых, вследствие понижения температуры, вязкость ластолько возросла, что стала препятствовать кристаллизации. Путем рентгеновского анализа, исследованием спектральных и других свойств удалось, однако, установить, что такие представления правильны только частично и стеклам несвойственна полная беспорядочность расположения частиц, а в небольших элементах объема часто отчетливо проявляется упорядоченное расположение их ближний порядок). [c.157]

    Твердое щество может находиться в кристаллическом и аморфном состоянии. Для торо чтобы нагляднее представить себе различия мсжд) кристаллическими и аморфными веществами, а также между твердыми телами и жидкостями, рассмотрим более подробно вопрос об упорядоченности во взаимном расположении атомов или молекул в них. Упорядоченность, которая проявляется иа расстояниях, сравнимых с межатомными, является упорядоченностью ближнего порядка, а упорядоченность, повторяющаяся на иеограииченпо больших расстояниях,— дальнего порядка. Как известно, в газах (точнее, в идеальных газах) расположение молекулы в какой-либо точке пространства ие зависит от расположения других молекул, т. е. в них отсутствует дальний и ближний порядок. Что же касается жидкостей и аморфных тел, то в них уже существует ближний порядок, характеризующийся некоторой закономерностью в расположении соседних атомов. Дальний порядок в жидкостях и аморфных телах отсутствует, так как на больших расстояниях этот порядок размывается и постепенно переходит в беспорядок . [c.11]

    При больших значениях сил внутреннего трения нз сложных структурных единиц или надмолекулярных структур, находящихся во взвешенном состоянии, формируются пространственные внутренние сетки (ячейки), в которых в иммобилизованном виде находится неструктурированная жидкость. На рис. 2 схематично показана ассоциация частиц при гелеобразовагши и коагуляции. При гелеобразовании жидкая нефтяная система приобретает твердое (аморфное) состояние без фазового перехода, так как порядок дальнодействия между молекулами и структурнььми единицами при этом не изменяется. Такие системы имеют ближний порядок, 1при котором расположение каждой молекулы в надмолекулярной структуре и сложных структурных единиц в системе определяется положением соседей и не зависит от положения структурных единиц на дальних расстояниях. Система теряет подвижность (образуется гель), но не расслаивается или расслаивается медленно, хотя термодинамически и неустойчива (см. рис. 2,г). [c.34]

    Характер распределения ССЕ в твердых телах позволяет разделить их по степени симметрии на кристаллические п аморфные нефтяные дисперсные структуры. Твердые нефтяные тела, в которых расположение соединений имеет дальний порядок, соответствующий периодическому повторению определенной архитектуры в трех измерениях, называют кристаллическими, а расположение соединений в них — кристаллической структурой. Порядок, свойственный расположению соединений внутри твердого тела, часто приводит к симметрии его внешне] ) формы. Например, кристаллы графита имеют гексагональную форму, в базисных плоскостях атомы расположены в углах шестиугольников, на расстоянии 0,142 нм, т. е. на таком же расстоянии, как и в молекулах бензола. Прочность связей углерода в базисной плоскости кристалла графита примерно в шесть раз выше, чем в атомах углерода, расположенных на двух плоскостях, находящихся на расстоянии 0,3345 нм. Кристаллы графита имеют высокую симметрию. Аналогично другая форма кристалла углерода — алмаз — образует куб. В узлах кристаллическо 1 решетки алмаза а-связи каждого атома углерода направлены к четырем соседним атомам. Теплота сгорания алмаза несколько выше, чем графита. В связи с этим осуществляется переход при нагреве алмаза в графит в термодинамически более устойчивое состояние, в результате чего формируется новая симметрия. Симметрия также свойственна таким твердым нефтяным телам, как парафины. Известны нефтяные твердые тела с ближним порядком расположения соединений, они являются не кристаллами, а крайне вязкими жидкостями. К ним относятся, например, битумы, пеки, остаточные крекинг-остатки и др. [c.165]

    Имеющиеся данные показывают, что по структуре жидкости существенно отличаются от газов частицы жидкости предельно сближены и в характере их взаимного расположения намечается некоторая упорядоченность, подобная упорядоченности в кристаллических телах. Но порядок в структуре жидкости относителен, он соблюдается лищь на малых расстояниях и не распространяется на отдаленные частицы, т. е. в жидкостях присутствует так называемый ближний порядок . Он связан с наличием дырок в структуре жидкости, т. е. пустот в местах, где по всем признакам должна быть частица (рис, 1.5). Именно этим объясняется то, что плотность жидкости меньше плотности соответствующих кристаллических тел (за исключением НаО). [c.26]

    В работах Стюарта и Френкеля [1.1] было установлено, что даже в обычных низкомолекулярных жидкостях существуют упорядоченные участки молекул — рои ( сиботактические группы ), в которых наблюдается ближний порядок в расположении молекул. Эти рои термодинамически неустойчивы и носят флуктуационный характер. Время жизни таких роев определяется энергией межмо-лекулярного взаимодействия и интенсивностью теплового движения. [c.18]

    Наиболее четкие рентгенограммы наблюдаются для кристаллических образцов, а жидкости, стекла и аморфные вещества характеризуются наличием лишь размытых дифракционных колец, интенсивность которых резко падает с увеличением угла 0. Тем не менее, анализируя такие дифракто-граммы, можно получить обширную информацию о строении этих сред, в которых отсутствует дальний порядок (т. е. упорядоченное расположение частиц вдали от атома или молекулы, выбранной условным центром), но имеет место ближний порядок со свойственным ему упорядоченным расположением частиц, находящихся в непосредственной близости от условного центра. [c.122]

    На явлении рассеяния основаны экспериментальные методы получения спектров плотности в структурном анализе. Эти методы применимы к определению функций распределения плотности независимо от агрегатного состояния вещества. В газе нет корреляции в расположении частиц, поэтому складываются интенсивности волн, рассеянных отдельными частицами. Из картины рассеяния, в случае одноатомного газа, путем фурье-преобразова-ния находят распределение электронной плотности в атомах. Для многоатомного газа с помощью модельных расчетов определяют строение газовых молекул, в растворах изучают форму и размеры макромолекул, частиц вирусов и т. д. В жидкостях и аморфных телах существует корреляция в расположении ближайших соседей. Анализ картин рассеяния в этом случае позволяет определить ближний порядок. В кристаллах, как следствие периодичности структуры, имеется как ближний, так и дальний порядок. Дифракционная картина, получаемая от кристалла, является по содержащейся в ней информации наиболее богатой. Из этой картины, даже для таких сложных объектов, как биополимеры, можно определить координаты всех атомов кристалла [8]. [c.14]

    Второе предположение сводится к преставлению о квазикристал-лической структуре, жидкости каждая молекула окружена соседними, которые располагаются вокруг нее почти так же, как и в кристалле того же вещества. Однако во втором слое появляются отклонения от упорядоченности, которые увеличиваются по мере отдаления от первоначально взятой молекулы иначе говоря, отступление от правильного расположения по мере удаления от данной молекулы систематически возрастает и на большом расстоянии становится очень значительным — в жидкости существует ближний порядок. Этим строение жидкости отличается От строения кристаллов, характеризующегося строгой повторяемостью одного и того же элемента структуры (иона, атома, группы атомов, молекул) во всех направлениях, т. е. дальним порядком. Таким образом, при Тжидкость является искаженным кристаллом, в котором утрачен дальний порядок. [c.278]

    Известно, что любая низкомолекулярная жидкость неоднородна по плотности, в ней существуют так называемые флуктуации плотности. Рассеяние света чистыми жидкостями обусловлено именно наличием флуктуаций плотности, как это хорошо известно из курса физики. Флуктуации плотности возникают благодаря наличию значительных по величине сил межмолекулярного взаимодействия. Силы межмолекулярного взаимодействия могут оказаться столь значите. ьными, что даже в неполярных низкомолекулярных жидкостях в отдельных микрообъемах молекулы укладываются упорядоченно. Микрообъемы, в которых этот порядок сохраняется, малы, поэтому и порядок в расположении молекул называется ближним порядком он быстро нарушается и переходит в структуру неупорядоченного расположения молекул. Чем больше микрообъемы, где сохраняется ближний порядок, чем совершеннее укладка [c.96]

    Вместе с тем нельзя слишком буквально понимать квазикристалличность структуры жидкости. Вдали от температуры плавления ближний порядок и характер движения частиц в жидкостях и кристаллах различаются очень сильно. Для несферических молекул ближний порядок в кристалле и жидкости сходен только в срав1гительно узкой области температур вблизи температуры плавления. При более высоких температурах свободное вращение несимметричных молекул в жидкости приводит к возникновению высокосимметричных ячеек, которые не возникают в кристаллических телах. Наличие ячеек — это в первую очередь следствие высокой плотности жидкости, благодаря чему движение молекулы ограничено присутствием близко расположенных соседних частиц. [c.258]

    Жидкое состояние вещества является промежуточным между твердым и газообразным (рис. 1.1). Сбласть существования жидкости ограничена со стороны низких температур переходом в твердое состояние (точки сМ ), а со стороны высоких — переходом в газообразное состояние (точки с, е). Линия АК, разделяющая жидкую и газообразную фазы, заканчивается критической точкой, соответствующей температуре и давлению р р, выше которых невозможно существование жидкости в равновесии с паром. Линия равновесия жидкость — твердая фаза критической точки не имеет. У металлов температура плавления повышается с увеличением давления (кривая АВ) у льда, кремния, гер1иа-ния — понижается (кривая АВ ). Точка А на диаграмме состояния соответствует температуре и давлению, при которых в закрытом сосуде находятся в равновесии твердая, жидкая и газообразная фазы. Жидкости сочетают некоторые свойства как твердых тел, так и газов. Твердые тела бывают кристаллические и аморфные. По типам связи кристаллы подразделяют на атомные, ионные, металлические и молекулярные. Они обладают ближним и дальним порядками. Ближний порядок означает правильное расположение около фиксированного атома, иона или молекулы определенного числа ближайших соседей. Дальним порядком называется расположение частиц в определенной последовательности с образованием единой трехмерной решетки. При наличии дальнего порядка расстояние до любого атома кристалла вычисляется через параметры элементарной ячейки по формуле [c.7]

    Иногда аморфным называют такое состояние, которое характеризуется обрывками структуры твердого тела и весьма развитой поверхностью [49, стр. 21 ]. Если же считать аморфным состояние, аналогичное переохлажденной жидкости, то в аморфных телах, надо полагать, расположение частиц такое же беспорядочное, как и в переохлажденной жидкости. Дальний порядок (о чем см. ниже), характерный для кристаллических тел, в них отсутствует, а ближний, если и образуется, )аспространяется только на ближайшую координационную сферу. 1од ближним порядком мы понимаем расположение вокруг данного атома (или иона) его ближайших соседей. Взаимным расположением атомов и расстоянием между ними определяются силы взаимодействия — их величина и направление, а также перекрытие электронных облаков (волновых функций) [48, стр. 182]. [c.114]


Смотреть страницы где упоминается термин Жидкости ближний порядок расположения: [c.99]    [c.122]    [c.164]    [c.115]    [c.266]    [c.11]   
Физическая и коллоидная химия (1964) -- [ c.0 ]

Физическая и коллоидная химия Учебное пособие для вузов (1976) -- [ c.0 ]




ПОИСК





Смотрите так же термины и статьи:

Порядок ближний



© 2025 chem21.info Реклама на сайте