Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Оптические материалы в области

    Однако не существует одного и того же источника, приемника излучения и оптического материала для измерения спектров поглощения в диапазоне 100—100 000 см К В зависимости от используемых материалов весь диапазон электронных спектров делится на четыре области. [c.9]

    Иодид цезия — не только хороший оптический материал [182, 187] для инфракрасной спектроскопии (область оптической прозрачности лежит в интервале длин волн от 242 до 5,0- 10 нм), но и ценный негигроскопичный сцинтиллятор [34],обладающий максимумом (460 нм) флуоресценции при —180° С. Качество иодида цезия как сцинтиллятора возрастает при добавлении к нему примеси таллия. Монокристаллы иодида цезия, активированные тал- [c.104]


Рис. 15.3. Области прозрачности различных инфракрасных оптических материал Рис. 15.3. <a href="/info/1698872">Области прозрачности</a> <a href="/info/537621">различных инфракрасных</a> оптических материал
    Важнейшими характеристиками элементов НПВО являются область прозрачности, показатель преломления 1, число отражений N и угол падения 0 (или интервал углов падения 0). Первые два параметра определяются свойствами оптического материала, из которого изготовлен элемент НПВО, а два других — формой и [c.482]

    При расчетах оптических систем для видимой области спектра оптический материал принято характеризовать этими тремя показателями преломления, причем показатель преломления по считается основным. [c.9]

    Отражательная способность оптического материала с уменьшением длины волны падающего света увеличивается. С другой стороны, прозрачность оптического материала в этих условиях для УФ излучения довольно резко падает. Поэтому при сравнительно небольшом числе оптических деталей контрастность изображения в УФ области спектра заметно ухудшается. Например, в микроскопах, предназначенных для работы в УФ области спектра, особенно необходимо уменьшение количества рассеянного света. Пропускание биологических препаратов или отражательная способность металлографических шлифов, являющихся предметом исследований под микроскопом, сильно снижаются в ультрафиолетовой области. Из-за многократных интенсивных отражений яркость изображения объекта, наблюдаемого в микроскоп, сильно, уменьшается. Яркость светлого фона становится соизмеримой с яркостью изображения шлифа, вследствие чего детали последнего оказываются очень нечеткими. [c.11]

    Полиметилметакрилат прозрачен для видимого и УФ света до Я = 250 нм и для широкой области длинноволнового ИК излучения. Это оптический материал (органическое стекло) с /г = 1,492 [367], который используется в настоящее время при изготовлении деталей оптических приборов. [c.164]

    Все оптические детали в приборах, используемых для измерений в видимой и ближней инфракрасной областях спектра, сделаны из стекла. При работе в ультрафиолетовой области применяется кварцевая оптика. Соответствующий материал используется и при изготовлении кювет. [c.470]


    При наблюдении процесса набухания под микроскопом отчетливо видно движение фазовой границы системы сополимер — растворитель. По истечении незначительного промежутка времени от базовой границы отделяется темная кольцевая полоса, которая перемещается в сторону, противоположную движению фазовой границы. Из данных [11, 12, 20] следует, что этой кольцеобразной полосе соответствует точка перегиба на кривой распределения концентрации растворителя в полимере. Появление этой темной полосы, которая получила название оптической границы, объясняется явлением полного внутреннего отражения света от поверхности с резко различными свойствами, отделяющей чистый сополимер от раствора. Таким образом, оптическая граница разделяет области материала сополимера с резко различающейся проводимостью, а скорость перемещения этой границы обусловлена диффузией растворителя в сополимер. [c.298]

    Анализ результатов решения показывает (см. рис.4.15), что при релаксации напряжений в /-м слое (/ = 1, 2,. . . , Л ) происходит деформация размеров этого слоя вследствие изменения конформаций макроцепей под воздействием возникших локальных напряжений. В области интенсивной релаксации напряжений происходят значительные деформации гранулы сополимера. Таким образом, вместе с положением оптической границы и вслед за ним перемещается область наиболее значительных деформаций материала сополимера, которые быстро уменьшаются после прохождения релаксационной волны напряжений. В этой связи наиболее крутой подъем координаты фазовой границы наблюдается в первоначальные моменты времени, когда локальные напряжения достигают наибольшего значения, а их релаксация захватывает одновременно несколько элементарных слоев материала сополимера. Затем по мере ослабления волны напряжения релаксируют в значительной части пространства исследуемого образца наблюдается замедленное движение фазовой границы. [c.327]

    При записи спектров поглощения обычно используют две кюветы кювету сравнения, заполненную растворителем, и кювету образца, заполненную исследуемым раствором в данном растворителе. Применение двух кювет позволяет компенсировать поглощение растворителя и материала кювет, а также потери излучения при отражении его на границах различных оптических сред. В абсорбционной спектрофотометрии применяются кюветы разных размеров длина оптического пути в кювете изменяется от долей миллиметра до нескольких сантиметров, объем — от долей миллилитра до нескольких десятков миллилитров. Для работы в УФ-области кюветы изготовляются из кварца, в видимой области можно пользоваться стеклянными кюветами. [c.17]

    Спектры жидких образцов. Спектры жидкостей и растворов приходится снимать наиболее часто. Для качественного определения вещества достаточно поместить каплю исследуемого соединения между отполированными поверхностями пластинок из подходящего материала (табл. 19). Оптические свойства поверхности таких пластинок в видимой области (помутнение, мелкие царапины и т. п.) не играют большой роли, так как рассеяние света такими дефектами резко уменьшается с увеличением длины волны, и мутная пластинка может быть прозрачной для ИК-излучения. Образовавшийся между пластинками капиллярный слой жидкого веще- [c.205]

    На рис. 5.7 представлены картины изохром в моделях из оптически-активного материала с различной геометрией переходной области двух стыков с различной толщиной и смещенных друг относительно друга на величину с (рис.5.2,а). В этих моделях варьировался угол перехода, а радиус кривизны при этом сохранялся постоянным (около 0,05 мм). Как видно, увеличение угла перехода существенно снижает концентрацию напряжений в угловых точках А. В симметричных моделях (рис.5.7,а) картина интерференции наблюдается лишь в области стыка. По мере удаления от стыка изохромы исчезают. В несимметричных моделях (рис.5.7,б) изохромы отмечаются вдали от стыка (в виде продольных прямых). Это свидетельствует о наличии в таких моделях изгибных напряжений. Факт снижения степени концентрации напряжений с увеличением угла перехода известен давно и широко используется в практике конструирования, однако, для сварных соединений со смещением кромок подобный способ повышения сопротивления разрушению предложен нами [23,26,30]. Пара- [c.291]

    При таком подходе для широкого круга материалов выбирают оптимальную (стандартную) величину заглубления индентора. Время внедрения индентора также строго регламентируют. Твердость исследуемого материала определяют по нагрузке, регистрируемой на приборе и являющейся мерой сопротивления материалов внедрению индентора. Область испытания на твердость значительно может быть расширена за счет применения метода "микротвердости". Под последним подразумеваются характеристики твердости, определяемые методом вдавливания индентора при малых нагрузках и получаемые при малых микроскопических отпечатках. Метод микротвердости требует высокой точности геометрической формы и размеров индентора, применения более совершенных и точных измерений отпечатков или глубин внедрения с помощью специальных оптических и тензометрических средств. Микротвердость расширяет область изучения свойств материалов, особенно в связи с физической и структурной неоднородностью. [c.62]


    Стекло широко и издавна используется в качестве прозрачного материала для зданий, различных автомашин и т. п., а также в качестве важнейшего материала при изготовлении оптических приборов микроскопов, телескопов, перископов, оптических прицелов и др. Применение таких приборов во многом обусловило прогресс в развитии ряда естественных наук (биологии, астрономии) и различных областей техники, в том числе военной. В настоящее время на основе применения тонких стеклянных волокон создаются новые, более эффективные средства связи. [c.233]

    На рис. 2.2 представлена принципиальная оптическая схема спектрального прибора. В зависимости от материала, из которого изготовлены оптические детали, такой прибор будет работать в. той области спектра, где эти материалы прозрачны. Например, стекло прозрачно в видимой области спектра, кварц — в видимой и ультрафиолетовой областях. [c.19]

    Материалы для изготовления призм. Для изготовления призм и других оптических деталей спектральных аппаратов применяют самые разнообразные материалы. Выбор материала зависит от его свойств прозрачности и дисперсии в рабочей области спектра, однородности, прочности, устойчивости к влажности воздуха и т. д. [c.86]

    Иногда из-за ограниченной прозрачности или дисперсии материала не удается охватить всю нужную область спектра. Тогда делают приборы со сменной оптикой. Так инфракрасные спектрофотометры снабжаются набором сменных призм и других оптических деталей, что дает возможность с помощью одного прибора работать по всей ближней инфракрасной области. В приборах с кварцевой оптикой часто имеется сменная стеклянная призма для увеличения дисперсии при работе в видимой области. [c.99]

    Возможность использования какого-либо прибора для измерений в той или иной области спектра определяется прежде всего оптическими свойствами материала, из которого выполнены элементы разрешающей [c.232]

    Автор тщательно следил за тем, чтобы его собственная область исследований — изучение оптически активных веществ спектрополяриметрическим методом, не заняла в книге непомерно большого места это хотя и важный метод сте-реохимического исследования, но все же лишь один из многих методов, используемых ныне в стереохимии. Точно так же и оптической активности уделяется меньше внимания, чем в книге Основы стереохимии , поскольку иначе было бы невозможно включить новый материал. [c.12]

    Первое предположение (фиг. 58, а). Продолжение нагретого участка стенки изготавливается из изоляционного материала. На фигуре лока-зана граница пограничного слоя в области Д/. Дополнительную разность оптических путей X А31 на высоте уо, обу- [c.146]

    При любом детальном исследовании биологического материала следует сравнивать информацию, получаемую с помощью широкого набора приборов. Во многих случаях полезно начинать исследования с РЭМ, поскольку его диап азон увеличений включает в себя область увеличений от получаемых с хорошей лупой до получаемых в просвечивающем электронном микроскопе высокого разрешения. В РЭМ также мы получаем привычное нам изображение. Сравнительные исследования относительно просто выполнять, подготавливая образец либо для просвечивающего электронного микроскопа, либо для оптического микроскопа после изучения образца в РЭМ. Пример сравнительного исследования приведен на рис. 11.3, а дальнейшие подробности можно найти в статьях [316—319] и в книге [320]. В работе [321] подробно описываются методы, которые могут быть использованы для сравнения всех трех типов изображений с гистохимическими данными, а в статье [322] дается подробное описание сравнительных исследований в световом микроскопе методом авторадиографии и в РЭМ. [c.220]

    История интенсивных электрофизических, физико-химических, оптических исследований алмаза насчитывает несколько десятилетий [1, 2]. Постоянно расширяется и область его практических применений, например, в технологии сверхтвердых материалов [3]. В то же время надежды на возможность использовать пленки синтетического алмаза в микроэлектронике (создание полупроводниковых микросхем для работы, например, при повышенных температурах) пока не оправдались, возможно, из-за недостаточного структурного совершенства получаемого материала [4]. С тем большей настойчивостью ведутся поиски новых областей применения алмазных материалов это и послужило толчком к проникновению алмаза в электрохимию. [c.6]

    В видимой области используют стекла различного состава, имеющие большую дисперсию, особенно для фиолетового и синего участков спектра. В ультрафиолетовой области в качестве оптического материала применяют кристаллический кварц. В вакуумной ультрафиолетовой области — природный флюорит (СаРг) и фтористый литий (LiF). В ближней инфракрасной области материалом оптики являются оптическое стекло и кристаллический кварц. Для фундаментальной инфракрасной области используют солевую оптику — LiF (до 6 мкм), Сар2 (до 9 мкм), Na l (до 15 мкм), КВг (до 27 мкм), sl (до 40 мкм). В далекой инфракрасной области применяют дифракционные решетки с различным количеством штрихов на 1 см. [c.52]

    Обратная линейная дисперсия зависит как от материала призмы, так и от конца спектра для данной призмы различна для длин волн в ИК- и УФ-областях. Поэтому выбор оптического материала для работы в той или иной части спектра определяется не только его прозрачностью, но также его преломляющими свойствами. По мере приближения к области максимального поглощения материала, из которого сделана иризма, показатель преломления возрастает (рис. 72), а следовательно, уменьшается обратная линейная дисперсия призмы н увеличивается разрешающая способность прибора, но при этом падает его светосила. Поэтому приборы с кварцевой оптикой пригодны для работы не выше > 600 нм, так как при больших длинах волн сильно возрастает обратная линейная дисперсия, хотя кварц прозрачен ие только в ультрафиолетовой части спектра, но также в видимой и ИК-области до 3,5 мкм. [c.237]

    При выборе материала для призм решающую роль играют его оптические свойства область прозрачности, значения показателя преломления п и дисперсии вещества dnidk. Так как последняя величина определяет и угловую дисперсию призмы, и ее теоретическую разрешающую способность, желательно иметь большие значения dnldk. С другой стороны, при больших п велики потери на отражение и нельзя делать призмы с большими углами А. Поэтому высокие значения п нежелательны. Необходимо принимать во внимание и такие свойства материалов, как двойное лучепреломление, однородность, возможность механической обработки, влагоустойчивость. Некоторые сведения об основных оптических материалах, используемых в спектральном приборостроении, даны в приложении 1 табл. I. [c.46]

    В последнее время заметен положительный сдвиг в области экспериментальной гидродинамики зернистого слоя, вызванный разработкой специальных электродиффузионных, термоанемомет-рическпх и пневмометрических датчиков скорости, а также ири-мепепия лазерного доплеровского измерителя скорости [3]. Последний метод имеет то преимущество, что не вносит возмущений в структуру среды и в поток, однако предъявляет особые требования к оптической однородности материала частиц. В случае применения контактных датчиков для измерений в зернистом слое особенно остро стоит вопрос о корректности эксперимента. [c.16]

    Техника эксперимента получения спектров ДОВ и КД аналогична снятию спектров поглощения, но есть существенный ряд особенностей. При выборе кювет, кроме подбора длины ее оптического пути, объема и материала, прозрачного в области измерения, необходимо выбрать кювету, не вращающую плоскость поляризации. Для изготовления таких кювет применяется обработанный специальным термическим способом кварц. Особенно об этом необходимо помнить при работе со сборными кюветами малейщие механические напряжения на кварцевые стекла сборных кювет могут привести к значительным неконтролируемым вращениям плоскости поляризации. Установление кюветодержателя и кювет должно быть во всех измерениях строго фиксировано и одинаково, так как даже поворот кюветы противоположной стороной к лучу света приводит к некоторым изменениям параметров спектров ДОВ и КД. Обязательно строго следить за чистотой и целостностью оптических стекол кювет. [c.43]

    Так как свойства вещества — механические, электрические, оптические, химические — определяются энергетическим состоянием валентных электронов, то в первую очередь нас интересует соответствующий участок энергетического спектра. Параметры последнего — значения ширины валентной, запрещенной зон, зоны проводимости и положение различных локализованных уровней — могут быть определены путем изучения оптических спектров, электропроводности и других свойств твердого вещества (см. гл. IX). Зная эти параметры, можно решать обратную задачу определять по ним неизвестные нам свойства вещества. Не случайно общепринятое деление твердых веществ на изоляторы, проводники, полуметаллы и металлы основывается на значениях ширины запрещенной зоны. Возьмем, например, ряд простых веществ алмаз, кремний, германий, олово, свинец. Каждое из этих вещёств по-своему замечательно и каждое используется как незаменимый материал, но в совершенно различных областях техники, а кремний и германии находят применение в полупроводниковой технике. Природа данных веществ изменяется скачками, как атомные номера соответствующих элементов. Скачками изменяется и ширина запрещенной зоны при переходе от одного аналога к другому. Для алмаза эта величина составляет 5,6 эВ. Это — изолятор, самое твердое из веществ. Для кремния она равна 1,21 эВ. Такой энергетический барьер уже много доступнее для валентных элек- тронов отсюда полупроводниковые свойства данного вещества. Ширина запрещенной зоны германия 0,78 эВ — он полупроводник с высокой подвижностью носителей тока — электронов и дырок. Наконец, серое олово по ширине запрещенной зоны, равной всего 0,08 эВ, занимает последнее место в данном ряду и относится скорее к металлам, чем к полупроводникам, а белое олово — настоящий металл. Так с изменением ширины запрещенной зоны закономерно изменяется природа твердого вещества. [c.105]

Рис. 58. Область прозрачности оптических материалов SiOa — кристаллический кварц СаРг — природный флюорит LiF, Na l и КВг— искусственные кристаллы. Сплошными линиями показана область наиболее частого применения материала Рис. 58. <a href="/info/1698872">Область прозрачности</a> оптических материалов SiOa — <a href="/info/172366">кристаллический кварц</a> СаРг — <a href="/info/1017694">природный флюорит</a> LiF, Na l и КВг— искусственные кристаллы. Сплошными линиями показана <a href="/info/1513864">область наиболее</a> <a href="/info/1822248">частого применения</a> материала
    Получение более или менее постоянной записи света и тени с помощью фотографии представляет наиболее хорошо известный из прикладных фотохимических процессов. Фотография относится к одному из методов получения фотоизображения, в котором для записи и копирования изобразительной информации используются кванты света. Помимо фотографии другие широко распространенные приложения фотоизображения включают копирование деловых бумаг (ксерокопию) и изготовление различных видов печатных форм. Если рисующий свет изменяет свойства (например, растворимость) материала, используемого для защиты некоторой подложки, то последующей обработкой можно перенести изображение на первоначально защищенную шаблоном поверхность. Такие материалы называются фоторезистами. Они чрезвычайно важны в производстве печатных форм, интегральных схем и печатных плат для электронной промышленности, в изготовлении мелких компонентов типа сеток электрических бритв, пластин затворов фотоаппаратов и многих других изделий. В настоящее время большое внимание привлечено к получению изображения с целью создания полностью оптических запоминающих устройств, отличающихся от магнитных тем, что запись и считывание информации осуществляются электромагнитным излучением видимой части спектра. Хорошо развиваются сейчас приложения оптического считывания к видео- и аудиотехнологиям ( компакт-диски ), а также в области оптического считывания — записи в запоминающих устройствах для компьютеров. [c.242]

    Аликвотную часть раствора I переносят в мерную колбу вместимостью ТОО мл, прибавляют 2-3 капли фенолфталеина и нейтрализуют 1н. раствором серной кислоты до исчезновения малиновой окраски. Далее прибавляют 2 мл 8н.раствора серной кислоты, затем по каплям 10 мл Южного оввжеприготовлен-ного раствора молибденовокислого аммония и тщательно перемешивают Г Через 10 минут небольшими порщями приливают 25 мл 8н. раствора серной кислоты и 25 мл б ного раствора соли Мора, доводят дистиллированной водой до метки, еще раз тщательно перемешивают и, спустя 10 мин, измеряют оптическую плотность на фотоэлектроколориметре, применяя светофильтр с областью пропускания 600-700 мм в кювете с толщиной поглощахщего веет слоя раствора 50 мм. Раствор сравнения готовят так же, как и рабочий, с той же аликвотной частью, но без анализируемого углеродистого материала. [c.58]

    Иттрий-железный гранат YjFe2(Fe04)3- красно-бурые кристаллы рЮ Ом см точка Кюри 556 К оптически прозрачен в области 1,1-1,5 мкм. Образуется при сплавлении оксидов Y и Fe. Монокристаллы выращивают из р-ра Y2O3 (10,0% по массе) и Fe Oj (20,4%) в расплавленной смеси РЬО (36,8%), PbF, (27,1%) и В Оз (5,5%) при снижении т-ры от 1300 до 930 °С со скоростью 0,3-0,5 град/ч используют также метод Вернейля. Материал магн. запоминающих устройств, магн. сердечников в микроволновой и телевизионной аппаратуре. [c.604]

    Спектры внутреннег о отражения наблюдают, когда исследуемый образец находится в контакте с призмой из оптически менее плотного материала излучение проходит сначала через призму и ее границу с образцом под углом, превышающим критический (т.е. угол падения, при к-ром преломление света в образец прекращается), а затем проникает в образец (на глубину до 1 -2 мкм), где теряет часть своей энергии и отражается. Таким образом получаются спектры нарушенного полного внутреннего отражения (НПВО). В качестве материала призм используют прозрачные в разл. областях спектра материалы в частности, кварц, оксиды цинка и магния, сапфир, кремний, фторид кальция, сульфид мышьяка, германий, GejjSejoASij, селениды мышьяка и цинка, хлориды натрия, калия и серебра, бромиды калия и серебра, теллурид кадмия, алмаз. [c.395]

    Оптические свойства полупроводников. Выше, в 1.2, было показано, что методы ИПД могут быть использованы для получения наноструктур не только в чистых металлах и сплавах, но и в полупроводниковых материалах, широко используемых в электронной технике. В последние годы значительный интерес вызвали оптические свойства наноструктурных 81 и Се, в которых наблюдалось люминесцентное свечение в видимой области спектра. Эти эффекты были обнаружены в пористом Si, полученном химическим травлением [396, 397], в образцах 81, полученных электронно-лучевым распылением [398], и в нанокристаллах Се, полученным магнетронным распылением [399]. Вместе с тем в этих работах исследованные образцы были в виде пористого материала или тонких пленок. В этой связи интерес представляет исследование спектров рамановского рассеяния и фотолюминес- [c.232]


Смотреть страницы где упоминается термин Оптические материалы в области: [c.330]    [c.16]    [c.25]    [c.602]    [c.488]    [c.221]    [c.61]    [c.64]    [c.250]    [c.81]    [c.773]    [c.7]   
Инструментальные методы химического анализа (1989) -- [ c.99 ]




ПОИСК





Смотрите так же термины и статьи:

Оптические материалы



© 2024 chem21.info Реклама на сайте