Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Единство химических и физических

    Все члены одного и того же гомологического ряда похожи друг на друга. В частности, для гомологов метана характерны те же реакции, что и для самого СН4, причем различие проявляется лишь в большей или меньшей легкости их протекания. Такое единство химических свойств (включающее, конечно, в себя и элементы различия), наряду с. более или менее закономерным изменением в гомологических рядах физических констант, чрезвычайно облегчает изучение органической химии, так как позволяет, зная свойства одного из членов ряда, иметь Достаточно отчетливое представление о свойствах остальных. [c.537]


    В свою очередь органическая химия проникла во все остальные разделы общей химии. Достаточно назвать повсеместное использование органических растворителей в неорганической, аналитической и физической химии или широчайшее использование органических лигандов в химии комплексных соединений, электрохимии, аналитической химии разделения элементов. Таким образом, на современном этапе единство химической науки очевидно. [c.10]

    О единстве химических и физических явлений. В итоге у исследователя, изучающего жидкие фазы, создается представление о глубоком единстве и общности химических и физических явлений. Процессы вязкого течения, диффузии, поглощения звука и электромагнитных волн, рассеяния света связаны в конечном счете с теми же молекуляр- [c.7]

    Это показывает, что и после появления осмотической теории Вант-Гоффа и теории электролитической диссоциации Аррениуса гидратная теория Д. И. Менделеева не спряталась в кусты , как научная замарашка , как утверждает Вальден а глубоко и всесторонне разрабатывалась крупными учеными. При этом характерной чертой русских химиков было то, что они говорили о единстве химических и физических процессов, происходящих при образовании растворов. [c.78]

    Между физическими и химическими явлениями существует глубокое единство. Молекулярные механизмы, которые приводят к химическим реакциям и таким процессам, как вязкое течение, диффузия, поглощение звука и электромагнитных волн, имеют больщую общность [1], [c.172]

    Для развития физической химии, как и вообще всей химии, большое значение имели работы Дмитрия Ивановича Менделеева (1834—1907), и прежде всего открытие им знаменитого периодического закона (1869), впервые показавшего единство природы различных химических элементов. Этот закон дал возможность, пользуясь экспериментальными данными о свойствах одних элементов и их соединений, предвидеть эти свойства для других элементов и их соединений. Все элементы, открытые позднее, нашли место в периодической системе без каких-нибудь ее принци-[шальных изменений. [c.16]

    Реальные модели, которыми являются физические объекты, подразделяют на физические и математические. Физическая модель характеризуется той же физической природой, что и исходный процесс. Создание моделей процессов, в которых сохраняются лишь самые суш,ественные черты — нелегкое дело и возможно только на основе знания промышленных процессов. Умение предсказать поведение химического реактора при изменении параметров процесса Является главным критерием правильного выбора модели. Поэтому для моделирования особенно важно единство теории й практики. [c.461]


    Скачкообразные изменения, с которыми связан химический процесс, отнюдь не исключает постепенных изменений взаимодействия, которыми подготовляется скачок. Напротив, каждому такому скачку предшествует своя постепенность, подготовляющая переход качественному изменению. Соотношения между физическими и химическими изменениями здесь просто иллюстрируют единство непрерывного и прерывного в природе. [c.170]

    ХИМИЯ — одна из областей естествознания, наука о химических элементах, их соединениях и химических превращениях, возникающих в результате химических реакций. Современная X. подразделяется на четыре основных направления неорганическую, органическую, физическую и аналитическую химию. Кроме этого, в связи с развитием науки X. возник ряд подразделов коллоидная X., X. мономеров и полимеров, X. редких элементов, X. природных соединений, X. поверхностно-активных веществ, X. комплексных соединений и др. Современная X. тесно переплетается с другими науками, в результате чего воз 1И-кают смежные области науки биохимия, геохимия, агрохимия, космохимия, химическая физика, нефтехимия и другие, которые дополняют, расширяют и развивают применение химических знаний в различных отраслях деятельности человека. X. находится в тесном единстве с практикой, она развивалась и развивается в связи с практическими потребностями человека. Развитие химической науки и техники привело к интенсивному росту химической промышленности, которая имеет важное значение в техническом прогрессе всех отраслей народного хозяйства. [c.275]

    Для развития физической химии огромное значение имели работы Д. И. Менделеева, и прежде всего открытие им периодического закона (1869), который установил связь между химической природой веществ и их физическими свойствами. Периодический закон доказал единство природы различных химических элементов, установил закономерное изменение свойств элементов при возрастании заряда ядра атома. Возрастание заряда ядра атома приводит к качественному изменению — переходу от одного элемента к другому. Переход этот происходит не плавно, а скачкообразно, в чем проявляется диалектический характер зависимости свойств химических элементов от их строения. [c.7]

    Менделеев, будучи сторонником химической теории растворов, не отрицал полностью физической теории, считая, что со временем обе теории в их единстве обеспечат разгадку сложной природы растворов и жидкого состояния, которое до сих пор остается неизученным полностью. [c.158]

    В начале 80-х годов в четвертом издании Основ химии и в лекциях по общей химии Д. И. Менделеев указывал на то, что единство законов... заменяет столь многими желаемое указание единства материала простых тел , и подчеркивал необходимость дать элементам не только отрицательную характеристику они практически неразложимы , но и попытаться найти для них признаки, лежащие в существо тела ... элементами нужно называть те материальные составные части простых и сложных тел, которые определяют их физические и химические особенности. Элементу отвечает понятие атом ... Понятию простого тела отвечает молекула, состоящая из одного... или многих атомов... Так, углерод — элемент, уголь, графит и алмаз — простые тола  [c.294]

    Во второй половине XIX в. с развитием основ химической термодинамики стало очевидным, что различия между физическими процессами (плавление, возгонка, испарение и т. п.) и химическими реакциями не столь велики. Например, возгонку и испарение можно рассматривать как химические процессы. Переход вещества в пар сопровождается изменениями в характере связи между атомами, что служит признаком химического превращения, особенно если испарение к тому же сопровождается ассоциацией или диссоциацией в паровой фазе (например, образование в паре молекул Р4, Аз4, За и т. п.). При растворении происходит не только распределение частиц растворенного вещества в растворителе (физический процесс), но и химическое взаимодействие между ними. Это показывает единство и глубокую внутреннюю взаимосвязь между физическими и химическими превращениями. Отсюда следует, что физические и химические процессы в термодинамическом отношении описываются однотипно. В результате успехов физической химии стала очевидной возможность единого рассмотрения физико-химических превращений и, в частности, изучения химических взаимодействий в системе при помощи физических методов. [c.322]

    При изучении свойств этих структур следует прежде всего иметь в виду единство и в то же время глубокое различие между понятиями вещества и материала, состоящего из этого вещества. Вещество характеризуется набором химических и физических свойств, материал — теми свойствами, которые определяют практическое его использование. Важнейшим в этом смысле является совокупность механических свойств — прочности, упругости, эластичности, пластичности и др. Поскольку эти свойства теснейшим образом связаны со структурой, они называются структурномеханическими. Среди них наибольшее для практики значение имеют упругопластические свойства, характеризующие способность тел сопротивляться деформациям, возникающим в результате внешних воздействий. Эти свойства определяют возможность использования тех или иных структурированных систем в качестве строительных и конструкционных материалов. [c.270]


    Химические свойства простых веществ. При рассмотрении физических свойств простых веществ подчеркивалось, что они в основном присущи макроскопическим количествам вещества (особенно в конденсированном состоянии). Что же касается химических свойств, то они главным образом определяются свойствами атомов или молекул, поскольку химическое взаимодействие всегда протекает на атомном или молекулярном уровне. Однако реально наблюдаемая химическая активность твердых простых веществ в заметной мере зависит, например, от величины поверхности соприкосновения, ее состояния, структуры кристалла и т.п., т.е. опять-таки от макроскопических характеристик. Так, мелкодисперсный цинк (цинковая пыль) значительно энергичнее взаимодействует с кислотами, чем гранулированный. Например, цинковая пыль восстанавливает азотную кислоту до аммиака, а гранулированный цинк — только до низших оксидов азота. Хорошо известна также способность многих металлов (А1, Ре, Т1, Сг и др.) к пассивации в агрессивных окисляющих средах, хотя сами эти металлы достаточно активны. Кроме того, различные модификации одного и того же простого вещества могут заметно различаться по химической активности (например, белый и красный фосфор). Таким образом, химические свойства простых веществ представляют собой единство атомной, молекулярной и кристаллической форм химической организации со всеми характерными для них особенностями. [c.249]

    Однако рассуждения о сводимости или несводимости лишены содержания. Речь идет не о поглощении биологии физикой, но о выяснении единства живой и неживой природы. Физика, как общая наука о веществе и полях, никак не проще биологии. Следует говорить не о редукционизме, но об интеграции различных областей знания. Так, сейчас совершенно ясно, что в химических превращениях нет никаких явлений помимо физических, и химия сводится к физике. Это ни в коей мере не отменяет самостоятельности и значимости химии, напротив, химия получает более глубокое и общее обоснование. [c.13]

    В аналитическом контроле (важной области практического применения АХ) основную роль стали играть физические, главным образом спектрометрические методы, хотя классические химические методы (гра метрия, титриметрия) не потеряли своего значения в обеспечении метрологического единства аналитических измерений в целом. [c.3]

    При изучении свойств этих структур следует прежде всего иметь в виду единство и в то же время глубокое различие между понятиями вещества и материала, состоящего из этого вещества. Вещество характеризуется набором химических и физических свойств, материал — теми свойствами, которые определяют практическое его использование. Важнейшим в этом смысле является совокупность механических свойств — прочности, упругости, эластичности, пластичности и др. Поскольку эти свойства теснейшим образом связаны со структурой, они называются структурно-механи- [c.262]

    Каждый из первооткрывателей каталитических реакций находил свои, главным образом чисто физические, объяснения к наблюдаемым им явлениям. И хотя все эти объяснения в конечном счете были направлены к одной цели — найти причины неучастия масс катализатора в стехиометрических уравнениях, цельного представления о катализе не существовало вплоть до 3 -х годов XIX в. Лишь в 30-х годах появились попытки объединить известные тогда отдельные каталитические реакции [1, 2] в одно целое. Наиболее удачной из этих попыток явилось обобщение Берцелиуса [3], открывшее в химии эпоху катализа. Несмотря на различные формы каталитических явлений, Берцелиус увидел в них некое единство, имеющее важное значение в химии. Превращение сахара в углекислоту и спирт под влиянием ферментов, разложение перекиси водорода в присутствии платины, гидролиз с помощью серной кислоты крахмала до сахара и, наконец, многочисленные химические процессы, совершающиеся в живой природе, он объединил одной общностью причин и назвал эту общность каталитической силой, или каталитической способностью вещества. Берцелиус показал, что эта сила (теперь бы мы сказали каталитическая активность, что совершенно не изменяет существа дела), свойственна как неорганической, так и органической природе [3]. Он не дал и не мог дать объяснений ее природы. Однако указал на то, что каталитическая способность многих как простых, так и сложных тел в твердом виде и в форме раствора является одним из проявлений электрохимических отношений материи [3]. [c.8]

    Окружающий нас мир един и бесконечно многообразен. Единство мира обусловлено его материальностью, а его беспредельное многообразие — бесконечным числом конкретных форм существования материи. ... Материя есть то, что, действуя на наши органы чувств, производит ощущение материя есть объективная реальность, данная нам в ощущении,... . Неотъемлемым свойством материи является движение, проявляющееся в бесконечном множестве различных форм — от простейшего механического движения до мышления. ...Вся природа, начиная от мельчайших частиц ее до величайших тел,. .. находится в вечном возникновении и уничтожении,. .. в неустанном движении и изменении . Каждый материальный объект — будь то частица поля (например, фотон) или целый звездный мир — обладает бесконечным многообразием свойств и взаимосвязей с окружающей природой. В мире существуют взаимозависимость и теснейшая, неразрывная связь всех сторон каждого явления . Одна из важнейших объективных закономерностей всеобщей взаимосвязи материальных объектов состоит в том, что развитие форм движения материи совершается от простого к сложному, от низшего к высшему. Каждая конкретная взаимосвязь различных форм движения материи по богатству различных оттенков неисчерпаема. Поэтому любая наука, в том числе и физическая химия, предметом которой является та или иная сторона взаимосвязи и взаимных переходов определенных форм движения материи, в своем развитии безгранична. Науке известен целый ряд различных форм движения материи физическая (механическая, молекулярная, тепловая, электромагнитная и т. п.), химическая, сорбционная и т. п. Каждая форма движения материи обладает специфическими особенностями и взаимосвязью со всеми другими формами движения. Особенности каждой формы движения материи, [c.5]

    Необходимость привлечения всей суммы химических и физических сведений о свойствах частиц, образующих раствор. Такой синтетический подход, отвечающий единству явлений природы, характерен для мышления Д. И. Менделеева вообще. Он особенно ярко выражен в его Основах химии , сохранивших свою неповторимую стройность до сих пор, и отразился в его понимании растворов. [c.12]

    Количественный анализ — измерение величин, характеризующих содержание веществ (структурных элементов в виде атомов, молекул или других частиц) в материалах, в породах, в средах и т. п. Измерение содержаний компонентов веществ — часть области физико-химических измерений. При этом измеряемые количества вещества, масса вещества — основные физические величины и результаты их измерений выражают в основных единицах Международной системы единиц СИ, Тот факт, что количественный анализ в метрологических терминах — это измерение содержаний компонентов веществ, обязывает обеспечивать единство этих измерений и создавать метрологическое обеспечение количественного анализа (выполняемого с помощью методик, установок, систем, комплексов, приборов), базирующееся на основополагающем стандарте ГОСТ 1,25—76 и на стандартах Государственной системы обеспечения единства измерений (системе ГСИ), [c.14]

    Связь же этих вопросов определяется не только одновременным действием двух факторов — химического состава и физического состояния твердого тела — в катализе, а тем единством состава и свойств, которое определяет качество катализатора. В этом состоит сущность комплекса этих двух вопросов. [c.209]

    Под управлением процессом размерной ЭХО понимается направленное изменение его физических, химических и технологических параметров с целью получения заданных характеристик точности, производительности формообразования, качества поверхности и других технико-экономических показателей. Особенностью управления процессом размерной ЭХО является сложность объекта управления, представляющего собой совокупность электрохимической ячейки, источника питания, электролитного агрегата и других устройств, связанных единством цели управления и взаимным влиянием. [c.107]

    Принципиально новые возможности для технологическо 1 практики добычи, транспорта нефт1г и ее переработки открываются на основе всестороннего анализа и единства рассмотрения физических и химических превращений компонентов нефти именно на начальных стадиях фазообразования в нефтяных системах, что позволяет получать ранее неизвестные эффекты. Выдвигаемая концепция изложена авторами в многочисленных статьях, опубликованных за последние 20 лет. [c.5]

    В последнее время для интенсификации высокотемпературных термических процессов (пиролиза), в которых мало выражены поверхностные явления, стали применять искусственно вводимые в систему поверхности — катализаторы [221]. ()бщнм л. 1я каталитических процессов независимо от их типа является единство физических (формирование развитой активной поверхности) и химических (изменение структуры молекулы) стадий, приводящих к изменению выхода и качества конечгп гх нефтепродуктов. [c.202]

    Общий теоретический курс Высокомолекулярные соединения , который преподается на химических факультетах и на некоторых отделениях биологических факультетов университетов страны, знакомит студентов с основами науки о полимерах и дает представление О ее важнейших практических приложениях. Знания эти необходимы каждому современному химику независимо от его узкой специализации. В общем курсе рассматриваются наиболее существенные аспекты химии, физико-химии и физики полимеров в их единстве, привносимом макромолекулярностью и цепным строением. Предлагаемое учебное пособие — руководство к практическим занятиям по общему курсу, естественно, исходит из тех же принципов преподавания этой дисциплины, сформулированных в свое время основателем первой в нашей стране университетской кафедры высокомолекулярных соединений академиком В. А. Каргиным. Главная задача общего практикума — закрепить у студента полученные им в общем курсе представления о химических и физических особенностях полимерного вещества, а также привить ему навыки работы в области синтеза, химической модификации изучения физико-химических, механических свойств и структуры полимеров различных классов. [c.5]

    Краткий исторический очерк развития физической химии. Мысль о необходимости изучения физических и химических явлений в их единстве и в рамках отдельной науки возникла около 200 лет назад. В 1752 г. М. В. Ломоносов прочитал студентам Академии наук в Петербурге курс лекций, названный им физической химией. Он писат, что физическая химия есть наука, объясняющая на основании положений и опытов физики то, что происходит в смешанных телах при химических операциях . В этот период для получения количественных закономерностей при изучении химических явлений начинают использоваться простейшие физические методы, формулируются законы сохранения веса веществ и кратных отношений (М. В. Ломоносов, Лавуазье, Дальтон). К этому времени относятся открытия адсорбции газов (Шееле), адсорбции из растворов (Ловиц), первые исследования в области электрохимии (Вольта, Фарадей, В. В. Петров). [c.7]

    Н. Бора. На химическом этапе закон периодичности и система Д. И. Менделеева рассматриваются в форме естественной системы химических элементов, вскрывающей и отражающей наблюдаемые отношения между элементами. Единство всех этих элементов в природе рассматривается как всеобщая взаимосвязь. Сам Д. И. Менделеев так говорил об этом ...Периодический закон, опираясь на твердую и здоровую почву опытных исследований, создался совер-Ц енно помимо какого-либо представления о природе элементов.... Естествознание нашло, после великого труда исследователей, индивидуальность химических элементов и потому оно может ныне ие только анализировать, но и синте ировать, понимать и охватывать как общее, единое, так и индивидуа.аьное, множественное. Единое и общее, как время и простраь ство, как сила и движение, изменяется последовательно, допускает интерполяцию, являя все промежуточные фазы. Множественное, индивидуальное... как дальтонов-ские кратные отношения — характеризуются другим способом в нем везде видны — при связующем общем — свои скачки, разрывы сплошности [И -, с. 221—222] Считается, что на физическом этапе эволюции идей о периодичности — этапе, который был подготовлен открытием и мпирическим обоснованием естественной системы элементов, появилась фундаментальная теория периодической системы. [c.49]

    Особенно четко идея единства физических и химических процессов была сформулирована Менделеевым в курсе теоретической химии, который он читал студентам Петербургского университета в 1873—74 г. Нет никакого основания делать такое различие между физическими и химическими явлениями, которое делает Доссиос. Напротив, факты указывают, что между этими явлениями нет никакой границы, так что даже теперь в некоторых случаях неизвестно, которая из этих двух сил производит известное явление... Да, наконец, и само понятие о физических процессах исключает их существование. Теперь называют физическими процессами такие, которые сопровождаются перемещением самих частиц, а не изменением их строения. Но в таком случае не будет вовсе физических процессов, так как все явления нагревания, плавления и т. д. обусловливаются изменением частиц, следовательно являются процессами химическими . И далее Можно отличить только механическое смешение от молекулярного, а подразделять последнее на химическое и физическое неосновательно . Эти идеи Менделеева сохраняют свое значение и в наше время. [c.5]

    Периодический закон Д. И. Менделеева лвляетсл основой современной химии. Изучение строения ато .юв вскрывает физический смысл периодического закона и объясняет закономерности изменения свойств элеменгов в периодах и в группах периодической системы. Знание строения атомов является необходимым для понимания причин образования химической связи. Природа химше-ской связи в молекулах определяет свойства веществ, поэтому данный раздел /1вляется одним из важнейитх разделов общей химии. Изучение этого раздела способствует формированию представлений о материальном единстве мира. [c.52]

    Успешное развитие химии в целом как интегральной науки невозможно без гармоничного развития частных (дифференцированных) химических наук, но не изолированных, а взаимно дополняющих и обогащающих друг друга. В этом смысле надо признать, что классическая химия в последние годы замегно отстает в своем развитии от некоторых естественно-химических наук, таких как геохимия, биохимия, биофизическая химия и др. Наиболее важный их вывод, который следует перенять науке о свойствах вещества - это то, что существуют чрезвычайно простые и универсальные законы функционирования и развития как живой, так и неживой природы, законы, общие для физических, химических и биологических процессов. Установлено, что поведение химических и биологических субстратов генетически строго закодировано. Используя эти представления, вслед за кибернетикой появилась (1980 г. Г. Хакен [31, 32]) новая интегральная междисциплинарная наука, получившая название синергетика - наука о самоорганизации сложных систем, устойчивости и распаде структур различной природы. Одновременно с синергетикой Б. Мандельбротом (1980 г. [33]) была предложена теория фракталов - структур, состоящих из частей, подобных целому и обладающих дробной мерностью. Благодаря этой теории появилась возможность математически описывать системы необычной сложности, которые считались хаотическими [34]. Было установлено, что практически все окружающие нас объекты в том или ином аспекте проявляют фрактальные свойства. Следствием философского обобщения этой теории явилась идея единства материального мира, о том, что мир зиждется на неких законах, и все процессы мира имеют единое происхождение и аналогичные законы поведения. Исключительно прав А. Пуанкаре, утверждая, что наука развивается по направлению к единству и простоте . [c.16]

    Борьбой с коррозией человечество вынуждено было заниматься ещё в древности, на заре своего развития одновременно с наступлением железного века . Ещё в пятом веке до н.э. древние феки для защиты железа от коррозии покрывали его оловом, полировали, оксидировали. Основы учения о коррозии металлов возникли на стыке двух наук - материаловедения и физической химии. Первым научным подходом в области коррозии принято считать работы великого русского учёного - естествоиспытателя М.В.Ломоносова, который в своей диссертации в середине 18 столетия открыл закон сохранения массы реагирующих веществ и обнаружил явление пассивности" у стали. В 1748 году М.В.Ломоносов высказал мысль и впоследствии (1756 г.) подтвердил её на практике, что при нафевании металлы соединяются с воздухом, образуя окалину (см. п. 1.1). В 1773 году эта первая научная теория окисления металлов бьша дополнена французским химиком А.Л.Лазуазье, доказавшим, что металлы при окисленрги соединяются с наиболее химически активной частью воздуха -кислородом. Основоположником учения электрохимической коррозии принято считать швейцарского физикохимика А.-А. Де ля Рива, который в начале прошлого столетия (1830 г.) открыл теорию коррозии микрогальванических элементов, хотя ещё в 1750 году. М.В. Ломоносов высказал мысль, что металлы в кислых спиртах растворяются иначе, чем соли в воде . Большой вклад в развитие электрохимической коррозии внес английский физик, почетный член Петербургской Академии наук М. Фарадей. Руководимый идеей о единстве сил природы, он эмпирически в 1833..Л834 годах открыл законы [c.6]

    Физическая химия привнесла много нового в наши представления о проблеме дискретности и непрерывности химического изменения в целом. Учение о растворах, адсорбционные теории, учение о коллоидах и т. д. ярко иллюстрируют важность значения химии неопределенных соединений. Понятие о химическом индивидууме изменилось. Традиционная привилегия дискретности отпала. Стехиометрические законы перестали казаться такими незыблемыми, как прежде. Фактический материал, накопленный в этой области, требовал серьезных новых обобщений, связанных с ревизией основных законов химии. Курнаков впервые, исходя из изучения фаз постоянного и переменного состава, указал пути устранения вековых противоречий между двумя взглядами, абсолютизировавшими в химии дискретность, с одной стороны, и непрерывность — с другой. Основываясь на данных физико-химического анализа, Курнаков показал наличие единства дискретности и непрерывности как в организации вещества, так и в процессе химических изменений, происходящих в тве рдых и жидких растворах. Однако каташиз остался в сто роне от этих обобщений. В учении о катализе синтез идей о дискретности и непрерывности происходил, как было показано выше, обособ ленно и прежде всего путем постепенного накопления данных вскрывающих во внестехиометрическом посредничестве катали заторов роль неопределенных соединений в активации реагентов Представления об этом формировались, как иравило, изолиро ванн о друг от друга и поэтому до сих пор не были объединены общей концепцией о единстве дискретности и непрерывности химических изменений подобно тому, как это было сделано применительно к учению о растворах. [c.20]

    Одним из важнейших законов естествознания, отражающих единство и многообразие мира, является периодический закон, открытый Д. И. Менделеевым. Основываясь на отображающей его периодической системе элементов, легче вскрыть закономерности строения атомов, установить изменения различных функциональных зависимостей от заряда ядра атома, понять причины подобия в свойствах элементов-аналогов. С самого создания системы элементов она сыграла реш ающл ю роль в открытии 1ЮВЫХ элементов, начиная с галлия, скандия и германия, предсказанных в свое время Менделеевым, и до полученного советскими учеными в 1964 г. элемента с порядковым номером I04, названного курчатовие.м. Созданная в наше.м веке на ос юве квантовомеханических иредставлений теория строения атомов показала, что взаимосвязь элементов в периодической системе обусловлена закономерным изменением структуры их атолюв, и объяснила периодическое из.менение химических и некоторых физических свойств атомов. [c.12]

    Расширение и углубление наших знаний требует постоянного совершенствования методов, средств, инструментов познания — без такого единства не может быть прогресса. Это касается любого рода деятельности, любой отрасли знания, и особенно молекулярной биологии. Эта сложная и остро современная наука нуждается в тонких и изяш ных средствах исследования, способных вскрыть структуру, физические и химические механизмы функционирования биологических молекул и систем. [c.3]


Смотреть страницы где упоминается термин Единство химических и физических: [c.308]    [c.41]    [c.28]    [c.62]    [c.178]    [c.406]    [c.6]   
Механизмы быстрых процессов в жидкостях (1980) -- [ c.0 ]




ПОИСК





Смотрите так же термины и статьи:

Единство химических и физических явлений



© 2025 chem21.info Реклама на сайте