Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Дисперсия по энергиям

    Серии линий рентгеновского излучения. На рис. 3.38 представлена подробная диаграмма серий линий рентгеновского излучения, которые существуют для каждого элемента. Степень сложности серии является функцией атомного номера элемента. Так для углерода, у которого имеются два электрона на А-оболочке и четыре электрона на L-оболочке, возможна лишь генерация линий Ка рентгеновского излучения. Хотя электроны с L-оболочки углерода могут быть удалены при столкновении, на Л4-оболочке нет электронов, которые бы смогли заполнить вакансию. Натрий (2=11) имеет один электрон на Л4-оболоч-ке, так что могут испускаться как Ка, так и A -линии рентгеновского излучения. Для тяжелых элементов со сложной структурой оболочек, таких, как свинец, серия линий рентгеновского излучения становится более сложной. В гл. 6 приведены примеры рентгеновских спектров, полученных в диапазоне энергий 1—20 кэВ с помощью рентгеновского спектрометра с дисперсией по энергии для титана А , Ар (рис. 6.2), меди Ка, Ар, L (рис. 6.8), а также L-серии и М-серии для тербия (рис. 6.9). Из этих спектров видно, что сложность спектра возрастает с атомным номером. Отметим, что на этих рисунках многие линии не разрешаются, например Ка —Ааг, из-за слабого разрешения спектрометра с дисперсией по энергии (см. гл. 5). [c.74]


Рис. 3.47. Спектр рентгеновского излучения никеля ( о = 40 кэВ), полученный с помощью спектрометра с дисперсией по энергии видна резкая ступенька на непрерывном фоне, обусловленная краем поглощения К-излучения никеля. Рис. 3.47. <a href="/info/381131">Спектр рентгеновского излучения</a> никеля ( о = 40 кэВ), полученный с <a href="/info/1596655">помощью спектрометра</a> с дисперсией по энергии видна резкая ступенька на непрерывном фоне, обусловленная <a href="/info/135144">краем поглощения</a> К-излучения никеля.
    J. РЕНТГЕНОВСКИЙ СПЕКТРОМЕТР С ДИСПЕРСИЕЙ ПО ЭНЕРГИИ [c.210]

Рис. 5.15. Схема системы спектрометра с дисперсией по энергии. Рис. 5.15. <a href="/info/63572">Схема системы</a> спектрометра с дисперсией по энергии.
    Ключом к пониманию работы спектрометра с дисперсией по энергии служит то, что амплитуды импульсов, производимых детектором, в среднем пропорциональны энергии входящего рентгеновского кванта. Основной процесс детектирования, с помощью которого происходит пропорциональное преобразование энергии фотона в электрический сигнал, иллюстрируется на рис. 5.17. Невозмущенный 51 (Ь1)-кристалл обладает зонной структурой (описание зонной структуры дано в обсуждении катодолюминесценции в гл. 3), в которой состояния в зоне проводимости свободны, а состояния в валентной зоне заполнены. При захвате высокоэнергетического фотона электроны перебрасываются в зону проводимости, оставляя дырки в валентной зоне. При наличии напряжения смещения электроны и дырки разделяются и собираются электродами, расположенными на поверхностях кристалла. Захват фотонов осуществляется путем фотоэлектрического поглощения. Падающий рентгеновский фотон вначале поглощается атомом кремния и испускается высоко-энергетический электрон. Затем этот фотоэлектрон по мере того, как он движется в кремниевом детекторе и испытывает неупругое рассеяние, генерирует электронно-дырочные пары. Атом кремния остается в состоянии с высокой энергией, поскольку на испускание фотоэлектрона потребовалась не вся энергия рентгеновского кванта. Эта энергия впоследствии выделяется либо в виде оже-электрона, либо в виде кванта рентгеновского характеристического излучения кремния. Оже-электрон испытывает неупругое рассеяние и также создает электронно-дырочные пары. Кванты рентгеновского излучения кремния могут повторно поглощаться, инициируя процесс снова, или неупруго рассеяться. Таким образом, имеет место последовательность событий, в результате чего вся энергия первичного фотона остается в детекторе, если только излучение, генерируемое в одном из актов [c.213]


Рис. 5.22. Полученный с помощью спектрометра с дисперсией по энергии спектр КС1, демонстрирующий перекрытие пиков. Рис. 5.22. Полученный с <a href="/info/1596655">помощью спектрометра</a> с дисперсией по <a href="/info/157425">энергии спектр</a> КС1, демонстрирующий перекрытие пиков.
Рис. 5.27. Форма импульсов главного усилителя спектрометра с дисперсией по энергии для различных постоянных времени. Рис. 5.27. <a href="/info/122855">Форма импульсов</a> <a href="/info/135327">главного усилителя</a> спектрометра с дисперсией по энергии для <a href="/info/1514062">различных постоянных</a> времени.
    Процессы, в результате которых распределение характеристических линий и непрерывного излучения модифицируется при переходе от спектра, генерируемого в образце Мп, до спектра, наблюдаемого в спектрометре с дисперсией по энергии. [c.254]

    Геометрическая эффективность сбора представляет собой телесный угол приема спектрометра ( /4л )-100%. Как видно на рис. 5.3, угол, отмеченный дугой в плоскости круга фокусировки кристалл-дифракционного спектрометра, не меняется с изменением Однако рас.ходимость в плоскости, перпендикулярной рисунку, понижает эффективность сбора с ростом К для данного кристалла. В случае спектрометра с дисперсией по энергии более высокая эффективность сбора является следствием большей свободы в размещении детектора ближе к образцу [c.256]

    Разрещение обоих спектрометров кристалл-дифракционных и с дисперсией по энергии измеряется обычно полушириной линии (ширина на половине высоты). Как было уже описано в уравнении (5,6) и показано на рис, 5,20, а, разрешение спектрометра с дисперсией по энергии определенным образом зависит от энергии, причем его значения обычно определяются для Мпк -линии, измеренной источником Ре. Даже при разреше- [c.258]

    Термином диапазон одновременного приема обозначается часть спектра, которую можно измерить в любой момент времени. Для кристалл-дифракционного спектрометра будет измерено только то излучение, углы дифракции которого близки к выбранному углу Брэгга. Спектрометр с дисперсией по энергии, с другой стороны, имеет большой диапазон приема и, следовательно, будет обрабатывать все принятые импульсы. Однако термина одновременное обнаружение следует избегать, поскольку ранее было описано, что два фотона, входящие в детектор одновременно, фиксируются многоканальным анализатором ошибочно как один с суммарной энергией. [c.261]

    СПЕКТРОМЕТРА С ДИСПЕРСИЕЙ ПО ЭНЕРГИИ [c.272]

    Рентгеновский спектрометр с дисперсией по энергии является удобным средством для качественного рентгеновского микроанализа. Тот факт, что весь спектр, представляющий интерес (область от 0,75 до 20 кэВ (или до энергии пучка)), может быть получен одно временно, обеспечивает возможность быстрой оценки состава образца. Так как эффективность 51 (Ь1)-детектора фактически постоянна (около 100%) в диапазоне энергий 3—10 кэВ, относительные интенсивности пиков для серий рентгеновских линий элементов близки к значениям, генерируемым в образце. В качестве негативной стороны следует отметить сравнительно низкое по сравнению с кристалл-дифракционным спектрометром энергетическое разрещение спектрометра с дисперсией по энергии, что часто приводит к проблемам, связанным с взаимодействием спектров, таких, как невозможность разделения линий рентгеновских серий разных элементов при низких энергиях (-<3 кэВ). Кроме того, наличие спектральных артефактов, таких, как пики потерь или суммарные пики, усложняет спектр, особенно когда рассматриваются пики с низкой относительной интенсивностью. [c.272]

    Ограниченное энергетическое разрешение спектрометра с дисперсией по энергии часто сталкивает исследователя с серьезной проблемой перекрытия пиков. Во многих случаях перекрытие пиков настолько велико, что с помощью 51 (Ь))-спектрометра невозможно провести анализ для представляющего интерес элемента. Проблемы, связанные с перекрытием, делятся на два класса 1) неверная идентификация пиков и 2) невозможность разделения двух перекрывающихся пиков, даже если исследователю известно, ЧТО они оба присутствуют. Вывести строгий критерий перекрытия на основе рассмотрения статистики трудно. В большинстве случаев, однако, почти невозможно разглядеть два пика, разделенных менее чем на 50 эВ, независимо от используемого метода разделения пиков. Исследователь должен проверять возможность перекрытий в пределах 100 эВ от пика, представляющего для него интерес. Если проблема заключается в идентификации и измерении пика малых добавок в окрестности главного пика основного элемента, она еще больше усложняется, так как перекрытие может быть значительным даже при разделении пиков на 200 эВ для объектов, содержащих наряду с основными элементами малые добавки. Если пики разрешаются только частично за счет перекрытия, то энергии каналов обоих пиков будут смещаться на 10—20 эВ от ожи- [c.282]

    Анализ с помощью спектрометра с дисперсией по энергии в материаловедении. Из-за большого числа элементов, по кото рым проводят анализ в материаловедении, число возможных взаимных влияний значительно больше, чем прн анализе биоло гических образцов, и исследователь во избежание ошибок дол жен постоянно контролировать себя. Особенно коварно взаим ное влияние в первых сериях переходных металлов, где /(р-ли ния элемента взаимодействует с /(а-линией следующего элемен та с более высоким атомным номером, как показано в табл. 6.2 В аналитических системах для количественного анализа с по мощью 51 (Ь1)-спектрометра можно проводить коррекцию этих помех. При качественном анализе, однако, когда рентгеновские линии малых добавок искажаются пз-за влияния линий основных элементов, часто бывает невозможно обнаружить присутствие малой добавки. [c.284]


    Из ЭТИХ рассуждений очевидно, что качественный анализ с помощью кристалл-дифракционного спектрометра не так прост, как анализ при помощи спектрометра с дисперсией по энергии. Тем не менее качественный анализ с помощью кристалл-дифракционного спектрометра обладает рядом ценных преимуществ, которых нет у спектрометра с дисперсией по энергии. Это показано на рис. 6.12 и 6.13, где сравниваются спектры стекла марки ЫВ5 К-251, содержащего тяжелые элементы, зарегистрированные кристалл-дифракционным и 51 (Ь1)-спектрометрами (состав стекла приведен в табл. 6.3). [c.291]

    В первой книге монографии известных американских специалистов изложены стандартные методы растровой электронной микроскопии и некоторые аспекты рентгеновского микроанализа. Рассмотрены особенности электронной оитики приборов, взаимодействие электронов с твердым телом, теория формирования изображения в растровом микроскопе, а также разрешение, информативность режимов вторичных и отраженных электронов, рентгеновская спектрометрия с дисперсией по энергии и длине волны и качественный рентгеновский микроанализ. [c.4]

    А при 30 кВ. Эта величина тока значительно превышает минимальный ток (1—5-10 А), который обычно необходим для проведения удовлетворительного количественного рентгеновского анализа с кристалл-дифракционным спектрометром. Согласно рис. 2.1, а, работая с вольфрамовым катодом, можно производить рентгеновский микроанализ с минимальным размером зонда порядка 0,2 мкм (2000 А). Такой размер пятна значительно меньше диаметра области-возбуждения рентгеновского излучения в образце (1 мкм, см. гл. 3). Малый размер пучка такого порядка позволяет оператору легко получать электронные растровые изображения анализируемых областей без изменения рабочих условий. Пушка с катодом из ЬаВе дает дополнительные преимущества в режиме микроанализа, потому что она позволяет исследователю проводить надежный рентгеновский микроанализ с электронным зондом размером менее 0,1 мкм. Следует отметить, что в стандартном РЭМ размеры пучка составляют примерно 10 нм (100 А) (рис. 2.1,6). При этом ток зонда для катодов из У или ЬаВе составляет менее Ю °А и слишком мал для проведения рентгеновского анализа кристалл-дифракционным спектрометром. Однако это как раз тот диапазон значения токов, где возможно проведение рентгеновского анализа с дисперсией по энергии (см. гл. 5). [c.15]

    Относительные интенсивности линий. Хотя имеется большое число возможных переходов для заполнения вакансий на оболочке, за счет которых возникают линии рентгеновского излучения различной энергии, например Ка и К или вплоть до 25 различных -линий, вероятность каждого типа перехода меняется в значительной степени. Относительные интенсивности линий означают относительные вероятности образования линий внутри серии, т. е. линий, возникающих за счет ионизации данной оболочки. Отметим, что относительное соотношение линий устанавливается внутри серии, например такой, как -серия эти величины не включают в себя относительные соотношения линий между сериями, как, например, /С-серии по отношению к -серии. Относительные интенсивности линий в серии сложным образом меняются в зависимости от атомного номера. Соотношение линий в /С-серии хорошо известно, но в - и М-се.-риях они известны гораздо меньше. В табл. 3.7 в первом приближении приведены относительные интенсивности линий значительной интенсивности относительные интенсивности линий являются полезными при интерпретации спектров, наблюдаемых с помощью рентгеновского спектрометра с дисперсией по энергии. [c.76]

    КД — конечная диафрагма ТД — твердотельный детектор электронов Э — Т — детектор Эверхарта — Торили ФЭУ — фотоумножитель С — сцинтиллятор РД — рентгеновские спектрометры (кристалл-днфракционные н/нлн с дисперсией по энергии) ЭЛТ — электронно-лучевые трубки, предназначенные для наблюдения и фотографирования изображения. Цифры 1—9 обозначают последовательные положения пучка при сканировании. [c.99]

    Усовершенствование рентгеновского спектрометра с дисперсией по энергии привело к тому, что рентгеновская спектрометрия стала доступна практически всем типам электронно-зондовых приборов. Следует, однако, отметить, что из-за особенностей метода спектрометрии с дисперсией по энергии искажения в идеальный рентген01вский спектр ( спектральные артефакты ) вводятся в процессе самого измерения, с чем приходится иметь дело в практической аналитической спектрометрии. В последующем обсуждении мы рассмотрим эти артефакты на каждой стадии процесса детектирования и усиления. [c.213]

    Для достижения максимально возможного энергетического разрешения для системы с дисперсией по энергии необходимо, чтобы главный усилитель имел достаточное время обработки каждого импульса с тем, чтобы получить максимальное отношение сигнал/шум. Это на практике означает, что оператор должен выбирать большую постоянную времени (т), обычно —10 МКС. Форма импульсов на выходе главного усилителя для т = 1, 6 и 10 мкс приведена на рис. 5.27. Важно отметить, что время, требуемое для возврата к базовой линии выходных импульсов при т=10 мкс, больше 35 мкс, в то время как при т=1 мкс требуется менее 5 мкс. Следо1вательно, использование больших постоянных времени, необходимых для достижения максимального разрешения, одновременно увеличивает вероятность того, что второй импульс поступит в главный усилитель прежде, чем пройдет первый. Этот момент также показан на рис. 5.27. Видно, что амплитуда импульса И, следующего через 20 мкс после импульса I, будет правильно оценена в 4 В при т=1 мкс, но составит 4,5 В при т = 6 мкс и 6,5 В при т=10 мкс. Если в реальной экспериментальной ситуации принимались бы такие импульсы, то соответствующие большим т были бы неверно определены в памяти многоканального анализатора и, следовательно, появились бы в неверных каналах электронно-лучевой трубки. Исключение таких случаев осуществляется в электронике системы при помощи схемы подавления наложения импульсов, блок-схема которой приведена на рис. 5.28 [109]. На рис. 5.29 даны эпюры напряжений на выходе соответствующих блоков в отмеченных точках. Сбор заряда в детекторе происходит очень быстро по сравнению с другими процессами, обычно за время порядка 100 не (точка /). В результате интегрирования этого заряда предусилителем получается ступенча- [c.224]

    Пользователь системы спектрометра с дисперсией по энергии обычно отвечает за установку спектрометра и связанной с ним электроники в электронно-зондовом приборе. Для получения оптимального спектра пользователь должен устранять артефакты, которые появляются в результате взаимодействия спектрометра с дисперсией по энергии с окружающей его средой. Они включают в себя м1Икрофонные эффекты, наводки с земли, накопление загрязнений и попадание паразитного излучения, в том числе и электронов в детектор. Предлагаемый способ установки детектора, позволяющий избежать указанных ниже эффектов, описывается в приложении к этой главе. [c.232]

    Одним из наиболее коварных артефактов, связанных с установкой детектора в электронно-зондо-вом приборе, является появление одной или более наводок заземления. Обычно мы предполагаем, что металлические детали системы микроскоп — спектрометр находятся под потенциалом земли и ток между ними отсутствует. В действительности, между деталями могут иметься небольшие различия в потенциале, от милливольт до вольт по порядку величины. Такие различия -в потенциале могут приводить к появлению токов, изменяющихся от микроампер до нескольких ампер. Зги избыточные токи называются наводками заземления или токами заземления, так как они текут в деталях системы, которые номинально заземлены, например шасси или внешние экраны коаксиальных кабелей. Так как наводки заземления переменного тока связаны с электромагнитным излучением, такие токи, текущие в экранированном коаксиальном кабеле, могут модулировать слабые сигналы, идущие по центральному проводнику. В системах спектрометров с дисперсией по энергии обрабатываемые сигналы очень малы, особенно в детекторе и предусилителе, следовательно, для сохранения сигнала следует всячески избегать наводок заземления. Влияние наводок заземления может проявляться в потере разрешения спектрометра, в искажении формы пика, искажении формы фона и/или в неправильной работе цепи коррекции мертвого времени. Пример влияния наводки заземления на измеренный спектр показан на рис. 5.35. Обычный Ка—i p-спектр Мп (рис. 5.35, а) может превратиться в спектр с кажущимся набором пиков (рис. 5.35, б), в котором каждый из основных пиков имеет дополнительный. На рис. 5.35,6 можно наблюдать и промежуточную ситуацию, в которой ухудшается разрешение главного пика без появления второго отчетливого пика. Объяснение этого частного, Bbi3iBaHHoro наводкой заземления артефакта иллюстрирует рис. 5.36. Если посмотреть форму сигнала наводки заземления, проходящего через медленный канал цепи обработки, то можно установить, что он является периодическим, но не обязательно синусоидальным, с большим разнообразием возможных форм, как показано на рис. 5.36. Когда импульсы случайного сигнала, соответствующего характеристическому рентгеновскому излуче- [c.234]

    Накопление загрязнений в детекторе спектрометра с дисперсией по энергии в процессе продолжительной работы может приводить к ухудшению работы. Лед может накапливаться в двух местах. Во-первых, при конденсации влаги в криостате с жидким азотом могут образоваться маленькие кусочки льда, которые пляшут в криостате при кипении жидкого азота (рис. 5.39). Эти вибрации могут передаваться детектору и чувствительному П олево.му транзистору. Из-за этих вибраций разрешение может ухудшаться на 30 эВ. В результате скопления льда внизу криостата может также ухудшаться теплопроводность между резервуаром с жидким азотом и узлом детектора, приводя к повышению температуры детектора выше требуемого рабочего значения за большой период времени. Небольшое накопление льда в криостате неизбежно, но скорость его накопления можно свести к минимуму, используя простые меры предосторожности. Жидкий азот для криостата поставляется обычно от главного танка в переносных дьюарах. Важно, чтобы [c.238]

    Несхмотря на большое число изменений, вносимых спектро-глетром с дисперсией по энергии -в генерируемый спектр, результирующий сигнал несет чрезвычайно полезную информацию и успешно выдерживает сравнение с результатами измерений с кристалл-дифракционным спектрометром. Оба типа спектрометров сравниваются в следующем разделе. [c.256]

    Предыдущий пункт приводит прямо к обсуждению минимально возможного размера зонда для рентгеновского анализа. Для каждого типа источника и напряжения, как детально показано в гл. 2 (рис. 2.16), для любого заданного размера зонда существует максимальное значение тока. Для обычных источников из вольфрама ток зонда изменяется пропорционально диаметру луча в степени 8/3 И имеет при 20 кВ типичные значения Ю А для зонда диаметром 20 нм (200 А), 10 А — для 100 нм (1000 А) и 10 А —для 1000 нм (10000 А). В спектрометре с дисперсией по энергии три помощи детектора диаметром 4 мм, находящегося на расстоянии 1 см от образца из чистого никеля, можно получить скорость счета около 10 имп./с для угла выхода 35° при диаметре зонда 20 нм (10 А) и 100%-ной квантовой эффективности. Как следует из рис. 5.33, скорость счета 10 имп./с является слишком высокой для реализации максимального энергетического разрешения, так что оператор должен либо отодвинуть детектор, уменьшить постоянную времени спектрометра с дисперсией по энергии, либо уменьшить ток зонда, перейдя к пятну меньшего размера. С другой стороны, соответствующая скорость счета для спектрометра с дисперсией по длинам волн составляла бы около 100 имп./с, что слишком мало для практического использования. Для массивных образцов (толщиной более нескольких микрометров) пространственное разрешение при химическом анализе не улучшается при использовании зондов с диаметром значительно меньше 1 mikm, поскольку объем области генерации рентгеновского излучения определяется рассеянием и глубиной проникновения электронов луча, а не размером зонда. Это демонстрируется на рис. 5.54, где показана серия расчетов рассеяния электронов и распределения генерации рентгеновского излучения, выполненных по методу Монте-Карло для зонда диаметром 0,2 мкм и гипотетического включения ТаС размером 1 мкм в матрицу пз Ni — Сг. Легко видеть, что траектории электронов и, следовательно, область генерации рентгеновского излучения, особенно при высоком напряжении, заметно превышают 1 мкм или 5- кратный диаметр зонда. Предельное значение диаметра зонда при исследовании таких образцов ниже нескольких сотен нанометров, поэтому полный анализ можно выполнить при форсированпи тока зонда до 10 нА и использова- [c.262]

    С практической точки зрения одним из основных достоинств спектрометра с дисперсией по энергии является скорость, с которой можно набирать и интерпретировать данные. Непрерывный набор е широком диапазоне энергий является основным преимуществом при проведении качественного анализа, которое компенсирует некоторые вышеуказанные недостатки. Кристалл-дифракционный спектрометр при механическом сканировании находится на каждой регистрируемой длине волны лишь в течение короткого промежутка времени от полного сканирования. Следовательно, при наблюдении за одним элементом или даже за частью фона информация обо всех остальных элементах отбрасывается. Так или иначе на измерение каждого отдельного пика приходится только от 1/100 до 1/1000 общего времени сбора данных, если только кристалл-дифракциопный спектрометр специально не запрограммирован на переход в положение пика. В случае спектрометра с дисперсией по энергии при времени счета 100 с и скорости счета 2000 имп./с получаемый спектр содержит 200 000 импульсов. Даже если половина этого количества импульсов принадлежит фону, большинство измеряемых примесей, присутствующих в количестве, больше.м нескольких десятых процента, по всей видимости, будут обнаружены. Более того, при использовании линий-маркеров и других вспомогательных средств для интерпретации можно за несколько минут провести качественный анализ. В случае кристалл-дифракционного спектрометра необходимо использовать несколько кристаллов, охватывающих различные диапазоны длин волн, при этом типичное время набора и пнтерпретаиии данных 10—30 мин. [c.264]

    ГИИ, с другой стороны, имеется ряд осложнений, которые могут привести ничего не подозревающего 0перат0 ра к затруднениям. Артефакты появляются на каждой стадии процесса спектральных измерений. Артефакты процесса обнаружения представляют собой ущирение и искажение формы пика, пики потерь кремния, поглощение и пик внутренней флуоресценции кремния. Артефакты, возникающие пря обработке импульсов, включают в себя наложение импульсов, суммарные пики и чувствительность к ошибкам при коррекции мертвого времени. Дополнительные артефакты появляются из-за окружения системы полупроводниковый детектор — микроскоп и включают микрофонные эффекты, наводки с земли и загрязнение маслом и льдом деталей детектора. Как в кристалл-дифракционном, так и в спектрометре с дисперсией по энб ргии может регистрироваться паразитное излучение (рентгеновское и электроны) от окружающих образец предметов, но из-за большего телесного угла сбора спектрометр с дисперсией по энергии более подвержен влиянию паразитного облучения. Однако из-за большого угла сбора такой спектрометр менее чувствителен к эффектам дефокусировки спектрометра при изменении положения образца. [c.265]

    В итоге это сравнение наводит на мысль, что достоинства спектрометров с дисперсией по энергии и кристалл-дифракционных компенсируют слабые стороны каждой из систем. Таким образом, видно, что два типа спектрометров скорее дополняют, а не конкурируют друг с другом. Ясно, что на современной стадии развития рентгеновского микроанализа оптимальной спектрометрической системой для анализа с манспмальными возможностями является комбинация спектрометров с дисперсией по энергии и с дисперсией по длинам волн. В результате революции, происшедшей в развитии лабораторных м,иня-ЭВМ, стали доступными автоматические системы нескольких фирм-изготовителей, которые эффективно сопрягаются с кристалл-дифракционным спектрометром и с полупроводниковым детектором. [c.265]

    Первой стадией анализа неизвестного образца является идентификация врисутствующих в нем элементов, т. е. качественный анализ. Качественный анализ часто считают простым, не заслуживающим внимания методом. Читатель найдет значительно больше ссылок на работы, посвященные количественному анализу, чем качественному, которым, за небольшими исключениями в литературе, пренебрегали [109]. Если элементный соста-в образца определен неверно, то очевидно, что бессмысленно говорить о точности окончательного количественного анализа. В качестве общего замечания следует отметить, что идентификацию основных элементов, входящих в состав образца, обычно можно проводить с высокой степенью достоверности, но при рассмотрении малых добавок или следов элементов могут возникнуть ошибки, если не уделить должного внимания проблема.м наложениия спектров, артефактам и мультиплетно-сти спектральных линий. Из-за различий в подходе к качественному анализу с помощью кристалл-дифракционного спектрометра и спектрометра с дисперсией по энергии эти устройства будут рассматриваться отдельно. [c.269]

Рис. 6.1. Энергии рентгеновских линий, регистрируемых спектрометром с дисперсией по энергии в диапазоне 0,75—ЮкэВ [109]. Рис. 6.1. <a href="/info/135272">Энергии рентгеновских</a> линий, регистрируемых спектрометром с дисперсией по энергии в диапазоне 0,75—ЮкэВ [109].
    Основные указани для проведения качественного анализа при помощи спектрометра с дисперсией по энергии [c.279]

    Многокомпонентное стекло. Спектр сложного, многокомпонентного стекла, полученный с помощью спектрометра с дисперсией по энергии, показан иа рис. 6.10, а. Найдено, что на высокоэиергетическом конце пики с энергией 6,40 и 7,06 кэВ соответствуют Ре и Ре р (рис. 6.10,6). Следует отметить, что пик Ре с энергией 0,704 кэВ не наблюдается из-за сильного поглощения. Следующую серию из четырех пиков вблизи 4,5 кэВ можно было бы приписать Кр и Однако ни положения пиков, ни их относительные высоты не соответствуют им. Эта серия представляет собой -серию Ва 1а (4,47), [c.285]


Смотреть страницы где упоминается термин Дисперсия по энергиям: [c.6]    [c.7]    [c.10]    [c.11]    [c.66]    [c.237]    [c.238]    [c.239]    [c.250]    [c.254]    [c.280]    [c.282]    [c.283]    [c.284]    [c.285]    [c.289]   
Массопектрометрический метод определения следов (1975) -- [ c.75 , c.84 , c.163 ]




ПОИСК







© 2025 chem21.info Реклама на сайте