Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Родий магнием

    В качестве геттеров в вакуумной технике используются также барий, цирконий, тантал, молибден и ряд сплавов. Для селективного поглощения отдельных газов иногда применяют родий, магний. [c.55]

    Серебро Родий. Магний.  [c.89]

    Для уменьшения или предупреждения образования углеродистых отложений в моторные масла вводят специальные ПАВ, называемые моюще-диспергирующими присадками. К их числу относятся сульфонаты, феноляты, салицилаты металлов (преимущественно бария, кальция и магния), а также беззольные соединения (сукцинимиды, различного рода сополимеры и пр.) [221]. Следует отметить, что термин моющие в известной степени является условным, так как данные присадки в основном препятствуют образованию отложений на нагретых поверхностях, а не оказывают моющего действия в прямом смысле этого слова. [c.210]


    Первый патент по каталитической гидрогенизации ацетилена в этилен появился в 1912 г. [68]. В этом патенте сообщалось, что катализатором гидрогенизации является любая смесь, содержащая один или несколько элементов из группы железо, никель, кобальт, медь, серебро, магний, цинк, кадмий, алюминий с одним или несколькими представителями группы платина, осмий, иридий, палладий, родий, рутений. [c.240]

    Так как прибавление спирта заметно повышает антидетонирующий эффект бензина, спирт вводится в некоторые специальные сорта. Однако смесь большинства бензинов со спиртом расслаивается при низкой температуре. Прибавление высших спиртов (С4, Се, Се и т. д.) действует очень сильно В( смысле понижения температуры расслаивания (до —40° и даже ниже). Поэтому в качестве примеси к бензину, кроме этилового спирта, может присутствовать один или несколько высших спиртов. Исследование такой смеси представляет большие затруднения. Пропиловые и бутиловые спирты едва растворимы в воде и отмываются ею. Но амиловые и высшие образуют с бензиновыми углеводородами нераздельно кипящие смеси. Их можно отделить от углеводородов, переводя спирты В1 двойные соединения с бромистым магнием (Челинцев) или путем окисления, переводя в альдегиды и кислоты. Методика такого рода анализов еще не разработана. [c.136]

    Для большинства высокотемпературных реакций используются металлические катализаторы. Они могут быть в виде металла, нанесенного на тугоплавкий носитель, такой, как плавленый оксид алюминия, смешанный оксид алюминия и магния, алюмосиликат, например муллит, алюминат магния (шпинель) и смешанный тугоплавкий оксид алюминия и хрома. Оксид хрома может обладать собственной каталитической активностью, и поэтому его следует тщательно исследовать, прежде чем использовать в качестве носителя. Наоборот, если возможно получить бифункциональный катализатор, в котором действие металла дополняется действием носителя, то хром в этом случае может принести существенную пользу. К числу металлов, используемых как катализаторы дегидрирования, принадлежат медь, серебро и иногда золото. Такие благородные металлы, как платина, палладий, родий и рутений, можно использовать при очень высоких температурах, а серебро недостаточно устойчиво при температурах выше 700 °С. [c.142]

    Более половины продуктивных пластов представлены карбонатными по-рода.ми, которые состоят в основном из известняков и ангидритов. Карбонаты часто сульфатизированы, попадаются тонкие прослои и прожилки кальцита. По химическому составу известняки состоят из карбоната кальция на 70-99 %, имеются примеси других пород (карбонат магния и др.). Показатели, характеризующие результативности методов повышения производительности скважин в ОАО "Оренбургнефть", приведены в таблице. [c.177]


    Азот. . , Алюминий Аргон. . Барий. Бериллий. Бор. . , Бром. . Ванадий. Висмут. . Водород. Вольфрам Галлий. , Гелий. . Железо, Золото. . Индий. . Иод. . . Иридий Кадмий. Калий. . Кальций, Кислород Кобальт Кремний Криптон. Ксенон. . Лантан. . Литий. . Магний Марганец Медь. . . Молибден Мышьяк. Натрий. . Неон. . . Никель. , Олово. Осмий. . Палладий Платина Радий. Радон. Рений. Родий. . Ртуть. . Рубидий,  [c.285]

    Соли кальция и магния, в зависимости от их состава, придают воде двоякого рода жесткость карбонатную ( временную ) и некарбонатную ( постоянную ). [c.440]

    К каждой из двух частей диаграммы полностью относится сказанное о диаграмме 5, с тем отличием, что роль второго компонента (А или В) играет соединение А В , состав которого отвечает точке О. Наличие соединения подтверждается минимумами или максимумами на кривых электропроводности, твердости и т. д. Подобного рода диаграммы (иногда осложненные образованием твердых растворов) имеют системы магний — кремний, магний — германий, магний — олово, кальций — кремний и др. по ним установлено существование соединений типа А В (Мд З и т. д.), имеющих определенный тип строения [c.37]

    В составе многих белковых веществ находится сера казеин молока содержит фосфор в гемоглобине крови содержится железо, в хлорофилле—магний. Для различного рода синтезов большое значение имеют органические вещества, содержащие галоиды. [c.27]

    Для ОЧИСТКИ от теллура может производиться осаждение НЬгЗз из сернокислого раствора, после окисления теллура до шестивалентного состояния небольшим избытком КгСгаОг, а также осаждение ВаТе04 из очень слабощелочного раствора, содержащего пиридин. В особых случаях теллур удаляется из раствора родия соосаждением его на гидроокисях ниобия и теллура, или, наоборот, остается в растворе при восстановлении родия магнием из 18 н. раствора НгЗО . [c.597]

    Родий, содержащийся в маточном растворе от осаждения иридия нашатырем, выделяют из подкисленного раствора цинком, очищают осадок хлорированием с хлорлстым натрием и еще раз осаждают родий магнием (см. также Отделение родия от иридия и рутения). Фильтрат от осаждения комплексных нитритов аммония (иридий и родий) может еще содержать палладий и платину (и следы иридия). Комплексные нитриты разрушают выпариванием с соляной кислотой досуха и удаляют избыток хлористого натрия, прокаливая остаток солей в токе водорода (см. также стр. 334 и 338). Соли выщелачивают водою, отфильтровывают платиновые металлы и растворяют их в царской водке. Относительно дальнейшей обработки см. Отделение палладия от платины, стр. 367. [c.339]

    По L. Wohler y и L. Metz y для отделения родия можно воспользоваться свойством родия образовать с висмутом сплавы, растворимые в азотной кислоте. Сплавляют мелкораздробленный сплав родия — иридия — рутения с 25—30-кратным (по родию) количеством висмута в течение часа при температуре не ниже 800° и предохраняют сплав от доступа воздуха, покрывая тигель древесным углем или пропуская в тигель азот. Получившийся королек (висмутовый сплав) растворяют в 50%-ной азотной кислоте, отфильтровывают нерастворившиеся иридий и рутений и после выпаривания с соляной кислотой из раствора висмута-родич осаждают висмут в виде хлорокиси. Осадок висмута необходимо переосадить несколько раз, так как он захватывает родий. Из соединенных вместе фильтратов от разных осаждений хлорокиси выделяют металлический родий цинком, затем полученную губку очищают хлЬрированием с хлористым натрием и, наконец, еще раз осаждают родий магнием из уксуснокислого раствора. Если в первоначальном сплаве родия, кроме иридия и рутения, содержится еще платина и палладий, то сначала сплавляют сплав с серебром и обрабатывают металлический королек азотной кислотой, причем главная масса платины и палладия переходит в раствор. [c.373]

    Гидрирующим компонентом обычно служат те металлы, ко — тор ае входят в состав катализаторов гидроочистки металлы VIII (Ni, Со, иногда Pt или Pd) и VI групп (Мо или W). Для активирования кат,1лизаторов гидрокрекинга используют также разнообразные промоторы рений, родий, иридий, редкоземельные элементы и др. Функции связующего часто выполняет кислотный компонент (оксид алк миния, алюмосиликаты), а также оксиды кремния, титана, циркония, магний— и цирконийсиликаты. [c.227]

    Примером подобного рода систем может быть МаОд на алюминии и MgO на магнии при коррозии этих металлов в воде. [c.300]

    ПО АЯия для этой реакции и значениям АЯг для однотипной с ней реакции разложения феррита кальция. Расчет доведен до температуры плавления хлористого магния. Точки плавления и кипения хлорного железа расположены в этом же температурном интервале. Поэтому для сопоставимости результатов тепловые эффекты определялись в расчете на газообразный хлорид железа. Феррит магния при 665 К претерпевает фазовый переход второго рода, который происходит практически без изотермического теплового эффекта. Как видно из табл. IV, 6, до этой температуры расчет по уравне- [c.140]

    Вышли следующие тома т. 1, 1956 (общие сведения, воздух, вода, водород, дей-теряй, тритий, гелий и инертные газы, радон) т. 3, 1957 (главная подгруппа I группы, побочная подгруппа I группы) т. 4, 1958 (бериллий, магний, кальсий, стронций, барий) т. 7, 1959 (скандий — иттрий, редкие земли) т. 10. 1956 (азот, фосфор) т. И, 1958 (мышьяк, сурьма, висмут) т. 12, 1958 (ванадий, ниобий, тантал, протактиний) т. 14, 1959 (хром, молибден, вольфрам) т. 15, 1960 (уран и трансурановые элементы) т. 16. 19(Ю (фтор, хлор, бром, марганец) т. 18, 1959 (комплексные соединения железа, кобальта. никеля) т. 19, 1958 (рутений, осмнй, родий, иридий, палладий, платина). [c.127]


    Каталитическое гидродеалкилирование может быгь осуществлено в широком интервале температур (300—680 °С) в зависимости от применяемых катализаторов. По активности катализаторы могут быть классифицированы на малоактивные — кокс, активный уголь, окислы цинка, ванадия, магния и др. умеренно активные — алюмо-молибденовый, алюмо-кобальт-молибдеповый, алюмо-хромовый, хром и молибден на угле, платина на носителях высокоактивные — никель на носителях (окислы алюминия, хрома, алюмосиликаты, силикагель), родий, иридий, осмий на окиси алюминия. [c.110]

    Впервые реакция гидроформилирования была осуществлена в присутствии кобальтового катализатора процесса Фишера—Тропша. Впоследствии были исследованы и запатентованы в качестве катализатора многие другие металлы. В литературе сообщается о каталитической активности родия, кобальта, хрома, иридия, железа, марганца, натрия, магния, кальция, платины, рения, осмия и рутения. Однако в промышленности до настоящего времени преимущественно используются кобальтовые катализаторы. [c.255]

    Для активирования катализаторов гидрокрекинга используют также разнообразные промоторы рений, родий, иридий, редкоземельные элементы и др. Функции связующего часто выполняют кислотный компонент (оксид алюминия, алюмосиликаты), а также оксиды кремния, титана, циркония, магний-и цирконийсиликаты. [c.250]

    Следует заметить также, что степень опасности радионуклидов зависит не только от характеристики радиоактивного излучения, но и от их способности накапливаться в живых организмах. Быстрее всего из организма выводятся висмут, родий, бром, серебро, кобальт, №1трий, углерод (пфиод полувыведения от 1 до 10 суток). Для теллура, цезия, бария, меди, рубидия, серы, хлора, калия, скандия, магния и сурьмы эта величина составляет от 10 до 100 суток, а для железа, хрома, цинка, мьппьяка, урана, тория, редкоземельных элементов, бериллия, фтора, фосфора - ог 100 до 1000 суток. Период полувьшедения свинца, радия, нептуния, плутония, америция и кальция превьппает 1000 суток [184]. [c.101]

    Прямым способом по пламенным эмиссионным спектрам определяют 40 элементов по атомным линиям и молекулярным полосам. Применение косвенных методов позволяет расширить число определяемых элементов. Например, фосфор или алюминий можно определять по гашению излучения щелочноземельных элементов элементы I, И1, Vni групп — по атомным линиям магний, хром, палладий, родий, марганец, щелочноземельные элементы — по молекулярным спектрам монооксидов и моногидроксидов, а также ионов (стронций и барий), бор — по полосам BOj, РЗЭ — по спектрам монооксидов. [c.15]

    В одних случаях необходимо установить общее содержание элементов, ионов или наиболее простых соединений, входящих в состав материала. При анализе хлористого магния определяют содержание магния и хлора в препарате. При аиализе бронзы определяют общее содерукание меди, олова, фосфора и т. д. При анализе глины определяют содержание двуокиси кремния, окиси железа, окиси алюминия и других компонентов. При анализе природных вод определяют содержание катиоиов Са % Ма , а также анионов НС0 7, 50 и СГ. Задачи такого рода решает общий химический анализ. [c.13]

    Мыла с двух- и трехвалентным катионом (кальциевые, магние-вые, алюминиевые и т. п.) нерастворИмЕг в воде, но образуют коллоидные системы в углеводородных средах. Они используются в консистентных смазках на минеральном масле, а также для стабилизации эмульсий второго рода (в/м). [c.401]

    Силицид магния MgaSi используется для получения кремневодо-рода SIH4, который является первым представителем предельных кремневодородов (силанов) общей формулы Si Hi +4  [c.121]

    С какими из перечисленных веществ взаимодействует бромоводо-род а) гидроксид кальция б) магний в) хлорат калия Написать уравнения протекающих реакций. [c.90]

    По отношению к воде характеристические оксиды ведут себя различным образом и по этому признаку их можно подразделить на четыре группы довольно редки оксиды, растворяющиеся в воде без заметного химического взаимодействия (высшие оксиды рутения и осмия) большинство оксидов химически не взаимодействует с водой и не растворяется в ней — соответствующие гидроксиды получаются лишь косвенным путем (в частности, амфотерные оксиды AlsO ,, СггОз, РегОз, ZnO и т. п.) две взаимодействующие с водой группы оксидов, из которых одни при взаимодействии образуют растворимые в воде гидроксиды основного или кислотного характера (оксиды бора, углерода, азота, фосфора, серы, щелочных и щелочно-земельных металлов), а вторые — нерастворимые в воде гидроксиды (оксиды бериллия, магния, редкоземельных элементов) основного характера. Учитывая, что сама вода является идеальным амфолитом, индифферентность оксидов по отношению к ней вовсе не связана с их индифферентностью по отношению к кислотам и щелочам. Все кислотные оксиды, независимо от их отношения к воде, реагируют со щелочами, а все основные — с кислотами. Так, нерастворимые в воде СиО и SiOa хорошо взаимодействуют с кислотами и щелочами соответственно. В то же время амфотерные оксиды, как правило, устойчивы не только по отношению к воде, но и к кислотам и щелочам. Типичным примером такого рода оксидов является AI2O3, совершенно не взаимодействующий с кислотами, а со щелочами реагирующий лишь в жестких условиях — при сплавлении. [c.63]

    Легко, но менее энергично, чем окислы других щелочных элементов, соединяется с водой, образуя ЫОН. Реакция сопровождается сильным разогреванием теплота растворения 31,3 ккал/моль [24]. Поглощая СОа из воздуха, Ь120 переходит в карбонат Ь1гС0з. Разрушает большинство даже коррозионноустойчивых материалов, оказывает корродирующее действие на многие металлы и окислы. Ниже 1000° устойчивы против ЫаО только N1, Аи, Р1, выше 1000° — только сплав платины с 40% родия [10, 25]. Не восстанавливается водородом, углеродом или его окисью. Получить из ЫзО металл можно, лишь действуя алюминием, магнием, кремнием выше 1000° [8, 10]. [c.9]

    Изоморфизм 2-го рода наблюдается при одновременном замещении катионов и анионов, если образующие их соли имеют одинаковые химические формулы, хотя зарядность замещенных ионов может быть различной. Например, перманганат калия образует смешанные кристаллы с сульфатом бария, селенатом бария, хроматом бария и сульфат бария — с КВ 4 (твердые растворы). Смешанные кристаллы выделяются из раствора, содержащего две изоморфные соли. При этом образуются однородные кристаллы переменного состава в зависимости от соотношения двух изоморфных солей. Изоморфизм карбонатов магния и кальция с карбонатами марганца, железа, цинка и кадмия может способствовать совместному осаждению этих ионов в 3-й аналитической группе катионов. Вследствие этого катионы магния, кальция и кадмия могут выпасть вместе с марганцем (И), железом (Н), цинком в осадок в виде карбонатов. Образование твердых растворов сильно затрудняет ход качественного, гравиметрического и микрокристаллоскопи-ческого анализов ( 39). [c.79]


Смотреть страницы где упоминается термин Родий магнием: [c.429]    [c.310]    [c.34]    [c.125]    [c.59]    [c.132]    [c.285]    [c.143]    [c.152]    [c.165]    [c.200]    [c.229]    [c.344]    [c.236]    [c.189]    [c.444]    [c.517]    [c.609]    [c.432]    [c.68]   
Аналитическая химия благородных металлов Часть 2 (1969) -- [ c.2 , c.32 ]




ПОИСК







© 2025 chem21.info Реклама на сайте