Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Молекулярные орбитали порядок связи

    Пример 3. Определите порядок связи в молекуле N0. Представьте энергетическую диаграмму молекулярных орбиталей N0. [c.34]

    Согласно теории молекулярных орбиталей порядок связи (кратность связи) оценивается полуразностью числа связывающих и разрыхляющих электронов  [c.51]

    В методе молекулярных орбиталей порядок связи можно определить как половину избыточного числа связывающих электронов по сравнению с разрыхляющими электронами. Как видно из рис. 9, в молекуле О2 имеются восемь связывающих и четыре разрыхляющих электрона, так что порядок связи равен двум, о согласуется с экспериментально определенной длиной связи и прочностью связи. С другой стороны, в молекуле N2, для которой тоже можно использовать схему молекулярных орбиталей, приведенную на рис. 9, нет электронов на орбиталях л и л , поэтому порядок связи равен трем. Молекула Рг имеет по паре электронов на каждой из л -орбиталей, и порядок связи равен единице. Эти порядки связей согласуются с энергиями связей (N2 225, О2 П8 и р2 36 ккал/моль). [c.54]


    По коэффициентам с, молекулярных орбиталей бутадиена легко вычислить порядок я-связей, заряды на атомах и индексы свободной валент ности (см. молекулярную диаграмму бутадиена на рис. 91). Видно, что при атаке свободными атомами или радикалами наиболее активны концевые атомы бутадиена. Как и для аллила, заряды на атомах отсутствуют. Вывод об электронейтральности атомов углерода в аллиле п бутадиене можно обобщить на все полиены. Отсюда следует, что прп ионной атаке все углеродные атомы полнена имеют равные шансы на взаимодействие с ионом. Расчет показывает, что я-связи в бутадиене имеют разные порядки в отличие от аллила, где порядок обеих я-связей один и тот же. Это согласуется со структурой молекулы. Концевые Связи у бутадиена ближе к двойным (г = 1,35-1(Г м), центральная — к ординарной (г = 1,46-10 м), т. е. картина распределения электрои- [c.224]

    Представление о резонансе часто используют для качественного описания строения молекул, но по мере усложнения структуры (скажем, при переходе от бензола к нафталину, пиридину и т. п.) количественные расчеты валентных схем становятся все более затруднительны. Поэтому для решения волновых уравнений чаще применяют другой метод, метод молекулярных орбиталей. Если с точки зрения этого метода качественно рассмотреть молекулу бензола, то можно видеть, что каждый атом углерода, связанный с тремя другими атомами, использует 5р -орбитали для образования а-связей, так что все 12 атомов лежат в одной плоскости. Кроме того, каждый атом углерода имеет еще р-орбиталь, которая может в равной мере перекрываться с двумя соседними р-орбиталями. Перекрывание шести таких орбиталей (рис. 2.1) дает шесть новых орбиталей, три из которых, связывающие (они показаны на рис. 2.1), называются я-орбиталями. Все три я-орбитали занимают примерно одинаковое пространство, одна из них имеет самую низкую энергию, а две другие являются вырожденными. Каждая орбиталь имеет узловую область, которая является плоскостью кольца, и разделяется иа две части, расположенные над плоскостью и под ней. Две высокоэнергетические орбитали (рис. 1, б и е) имеют еще другую узловую область. Шесть электронов, образующих тороидальное облако, называют ароматическим секстетом. Порядок связи углерод — углерод, вычисленный по методу молекулярных орбиталей, составляет [c.48]

    Электронное строение гомоядерных двухатомных молекул определяется путем мысленного процесса заполнения валентными электронами молекулярных орбиталей, начиная от а, и кончая а , в порядке возрастания энергии. Таким образом, можно установить, например, что молекула Ы2 имеет электронную конфигурацию КК(а ) (одна а-связь), а молекула N2 имеет конфигурацию КК (а,) (ст ) (Лд. у) (а,) с тремя эффективными связями (одна ст-связь и две л-связи). Эффективное число связывающих электронов, деленное на 2, дает условный порядок связи. Например, у молекулы Ы2 порядок связи 1, а N3 имеет порядок связи 3. По мере возрастания порядка связи в заданной гомоядерной двухатомной системе длина связи уменьщается, а энергия связи увеличивается. [c.544]


    Из гетероатомных молекул на молекулу азота весьма похожа но химическому строению и свойствам молекула оксида углерода. Заселенность молекулярных орбиталей в СО точно такая же, как н в молекуле азота (рис. 62). Разница заключается только в структуре АО со стороны углерода участвуют в образовании МО четыре электрона, а кислорода — 6. Порядок связи равен трем, т, е, соответствует кратности связи в СО согласно МВС. По сравнению с молекулой азота в молекуле кислорода имеется на 2 электрона больше. Энергетическая диаграмма и заселенность МО молекулы [c.124]

    Рассмотрите ио методу молекулярных орбиталей электронное строение молекул Эг для водорода, галогенов, халькогенов, азота, фосфора и углерода. Определите порядок связи и условия существования молекул Эг. Парамагнитны или диамагнитны эти молекулы Возможна ли конденсация газов Эг в жидкое и твердое состояние Какие свойства для них характерны—окислительные или восстановительные Способны ли молекулы Эг к дисмутации Ответ сопроводите уравнениями реакций. Для каких из указанных элементов образование катионов Э2+ наиболее выгодно Приведите примеры веществ, включающих катионы Э2+. Какие элементы могут существовать в виде молекул Э (п>2) и анионов Э (v=l,2) Устойчив ли ион I3+  [c.153]

    Опишите электронное строение молекулярного иона О , пользуясь представлениями теории молекулярных орбиталей. Каков порядок связи в этой молекулярной частице и сколько в ней неспаренных электронов  [c.530]

    Как видно из табл. 6, по мере заполнения связывающих молекулярных орбиталей (в ряду Вг—С2—N2) прочность связи повышается увеличивается ее порядок, уменьшается длина и возрастает энергия. При переходе от азота N2 к кислороду О2 и далее к фтору Е2 по мере заполнения разрыхляющих молекулярных орбиталей прочность связи понижается уменьшаются порядок и энергия, возрастает длина связи. Молекулы неона Ыбг и бериллия Вег вообще не существуют, так как для них число электронов на связывающих и разрыхляющих орбиталях оказалось бы равным. Многоатомные [c.69]

    Для любой из этих структур порядок связи между двумя центральными атомами углерода должен быть больше 1, а между двумя другими атомами углерода — меньше 2, хотя ни по одной из рассматриваемых структур нельзя предсказать, что три связи имеют одинаковую электронную плотность. Вычисленные по методу молекулярных орбиталей порядки связей равны 1,894 и 1,447 [17]. [c.52]

    Как видно из табл. 6, по мере заполнения связывающих молекулярных орбиталей (в ряду Вд—С2—N3) прочность связи повышается увеличивается ее порядок, уменьшается длина и возрастает энергия. При переходе от азота N2 к кислороду О2 и далее к фтору Р2 по мере заполнения разрыхляющих молекулярных орбиталей прочность связи понижается уменьшаются порядок и энергия, возрастает длина связи. Молекулы неона Кез и бериллия Вез вообще не существуют, так как для них число электронов на связывающих и разрыхляющих орбиталях оказалось бы равным. Многоатомные частицы, имеющие одинаковое расположение электронов в молекулярных орбиталях, называют изоэлектронными. Среди приведен- [c.86]

    Трех электронов в прямоугольной рамке достаточно для того, чтобы полностью заполнить связывающую молекулярную орбиталь, которая может быть образована из орбиталей 15д и ISg, и, кроме того, наполовину заполнить разрыхляющую орбиталь. Порядок СВЯЗИ в целом равен 1-- =4" показано пунктирной [c.161]

    Порядок связи. Порядком связи между атомами л и 5 называют величину определяемую как сумму произведения коэффициентов и молекулярной орбитали на число электронов, находящихся на орбитали (сумму берут по всем занятым орбиталям)  [c.112]

    Решение. Порядок связи в молекуле будут определять молекулярные орбитали, образованные внешними атомными орбиталями двух атомов азота. (Вклад внутренних молекулярных орбиталей в энергию связи практически равен нулю.) Электроны располагаются на образованных молекулярных орбиталях согласно энергетической последовательности орбиталей. При этом выполняется принцип Паули и правило Хунда  [c.33]

    На молекулярной орбитали какого типа находится неспаренный электрон в ионе НР Локализована ли эта орбиталь на атоме Р либо Н Какова молекулярно-орбитальная электронная конфигурация иона НР Чему равен порядок связи в ионе НР В ионе НР Где больше энергия связи, в НГ или НГ Является ли парамагнитным двухатомный ион НГ  [c.548]

    По характеру распределения электронов 1то молекулярным орбиталям можно оценить энергию, длину и порядок связи (табл. 8). Нахождение электрона на связывающей орбитали обусловливает сокращение межъядерного расстояния и упрочнение молекулы. Наоборот, нахождение электрона на разрыхляющей орбитали приводит к уменьшению связывания и увеличению межъядерного расстояния (длины связи). [c.47]

    Приближенно ковалентность атома может быть оценена по порядку связи, являющемся в большинстве случаев косвенной характеристикой прочности ковалентной связи. Ковалентность примерно равна сумме порядков связей, образуемых этим атомом со всеми остальными атомами молекулы. Для двухатомных систем порядок связи равен полуразности числа электронов, располагающихся на связывающих МО, и числа электронов, располагающихся на разрыхляющих МО. Эти числа электронов, приходящиеся на отдельные МО, называются заселенностями орбиталей. Заселенность любой орбитали (атомной, молекулярной) будем обозначать буквой ш. Поэтому порядок связи (Р) — полу разность заселенностей всех связывающих МО ш(Ф ) и всех разрыхляющих МО ш(Ф )  [c.119]


    Постройте энергетические уровни молекулярных орбиталей молекулы бора Е 2- Определите порядок связи. [c.17]

    Постройте энергетические уровни молекулярных орбиталей молекулы бора Ва. Определите порядок связи. Молекула бора обладает магнитными свойствами. [c.14]

    Порядок заполнения молекулярных орбиталей определяется запретом Паули и энергетическими соображениями. Сначала заполняются молекулярные орбитали с более низким уровнем энергии, причем на каждой молекулярной орбитали может находиться не более двух электронов с разными спинами. Кроме того, нужно, учесть, что для каждого вида связи, например для Оа -связи, [c.31]

    Энергия, длина и порядок связи. По характеру распределения электронов по молекулярным орбиталям можно оценить энергию, длину и порядок связи. Напомним, что нахождение электрона на связывающей орбитали означает, что электронная плотность концентрируется между ядрами, что обусловливает сокращение межъядерного расстояния и упрочнение молекулы. Наоборот, электрон на разрыхляющей орбитали означает, что электронная плотность концентрируется за ядрами. В этом случае, следовательно, энергия связывания снижается, а межъядерное расстояние увеличивается, как это показано ниже. [c.87]

    По методу молекулярных орбиталей составьте энергетическую диаграмму образования связей в молекулах Lia, N2,-Fj, Укажите порядок связи ( делайте вывод об относительной прочности этих связей. [c.56]

    Составьте энергетические диаграммы молекулярных орбиталей молекулы СЫ и молекулярного иона СЫ . Каков у них порядок связи  [c.35]

    В рамках метода молекулярных орбиталей охарактеризуйте образование связи в частицах Рг" , Рг° и Рг. Как изменяется порядок, энергия и длина связи при переходе от Рг+ к Рг Ваш ответ проверьте по справочным данным. [c.107]

    Химическое строение молекулы азота с позиций МВС и ММО характеризуется исключительной прочностью, несравнимой ни с какими другими двухатомными молекулами. Особая устойчивость молекулярного азота во многом определяет химию этого элемента. И кратность, и порядок связи в молекуле азота равны трем . Кроме того, на разрыхляюш,их молекулярных орбиталях нет ни одного электрона. Все это является причиной очень большой величины энтальпии диссоциации молекул азота и высокой их термической устойчивости. Поэтому азот не горит и не поддерживает горения других веществ. Напротив, он сам в молекулярном виде является конечным продуктом окисления многих азотсодержащих веществ. При комнатной температуре азот реагирует лишь с литием с образованием нитрида лития LigN. В условиях повышенных температур он взаимодействует с другими активными металлами также с образованием нитридов. Образующийся при электрических разрядах атомарный азот уже при обычных условиях взаимодействует с серой, фосфором, ртутью. С галогенами азот непосредственно не соединяется. Химическая активность азота резко повышается в условиях высоких температур (2500—3000 °С), тлеющего и искрового электрического разряда и в присутствии катализаторов. Так, при повышенных температурах и давлениях и в присутствии катализаторов азот непосредственно соединяется с водородом, кислородом, углеродом и другими элементами. [c.248]

    При образовании молекулы Нз оба электрона переходят с атомных 1з-орбиталей на связывающую молекулярную орбиталь. Два связывающих электрона отражают одну валентную химическую связь (Н—Н), порядок связи равен 1. [c.115]

    Порядок Связи в теории молекулярных орбиталей определяется как число электронных пар, заселяющих связывающие молекулярные орбитали, за вычетом числа электронных пар, заселяющих разрыхляющие молекулярные орбитали. Порядки связей, приводимые в табл. П 1.3, находятся в согласии с данными по энергии диссоциации. [c.187]

    О2 также имеется два неспаренных электрона, которые располагаются на 1с-молекулярных орбиталях. Именно наличием этих неспаренных электронов объясняются парамагнитные свойства молекул Вг и Ог-Метод МО позволяет объяснить упрочнение связи при образовании некоторых ионов. Например, при образовании молекулярного иона Ог и молекулы О2 длина связи уменьшается от 0,121 до О,П2 нм, а энергия связи увеличивается от 494 до 629 кДж/моль. Упрочнение связи обусловлено удалением электрона с разрыхляющей тс -орбитали и соответственно увеличением порядка связи с 2 до 2,5. Энергия связи в молекулярном ноне Рг (318 кДж/моль) значительно больше энергии связи в молекуле Рг (159 кДж/моль). Возрастание энергии связи объясняется удалением электрона с разрыхляющей а1 -орбитали, что увеличивает порядок связи с 1 до 1,5. [c.62]

    В процессе образования кристалла происходит перекрывание внешних электронных облаков атомов по аналогии с образованием химической связи в молекулах. В соответствии с методом МО при взаимодействии двух атомных электронных орбиталей образуются две молекулярные орбиТали связывающая и разрыхляющая. При одновременном взаимодействии N микрочастиц образуется N молекулярных орбиталей. Величина N в кристаллах может достигать огромных величин (порядка 10 ). Поэтому и число электронных орбиталей в твердом теле чрезвычайно велико. При этом разность между энергиями соседних орбиталей будет ничтожно мала. Так, в кристалле натрия разность энергетических уровней двух соседних орбиталей имеет порядок 10 Дж. Таким образом, в кристалле металла образуется энергетическая зона с почти непрерывным распределением энергии, называемая зоной проводимости. Каждая орбиталь в этой зоне охватывает кристалл по всем его трем измерениям. Заполнение орбиталей зоны проводимости электронами происходит в соответствии с положениями квантовой механики. Так, из условий минимума энергии электроны будут последовательно заполнять все орбитали, начиная с наинизшей, причем на каждой орбитали в соответствии с запретом Паули может располагаться лишь два электрона с антипараллельными спинами. С повышением температуры за счет теплового возбуждения электроны будут последовательно перемещаться на более высокие энергетические уровни, передавая тепловую энергию с одного конца кристалла на другой и обеспечивая таким образом его теплопроводность. [c.82]

    Составьте энергетические диаграммы образования сня зей в частицах N0+, N0 и N0 . Укажите число электронов на связывающих и разрыхляющих молекулярных орбиталях н определите порядок связи. В какой из указанных частиц связь будет а) самой прочной, б) самой длинной Какие из этих частиц а) парамагнитны, б) диамагнитны  [c.57]

    Опишите образование связи в молекуле Bi по методу молекулярных орбиталей. Укажите порядок связи и магнитные свойства этой молекулы. [c.75]

    В газовой фазе существуют молекулы PN. По методу молекулярных орбиталей опишите электронное строение этой молекулы, определите порядок связи в ней и укажите, каким другим азотсодержащим или фосфорсодержащим частицам она изоэлектронна. Является ли молекула PN полярной  [c.95]

    В методе молекулярных орбиталей используют понятие о порядке (кратности) связи. Порядок связи зависит от числа электронов, находящихся в связывающих (п ) и разрыхляющих (пГ Р) молекулярных орбиталях  [c.69]

    При образовании металлической связи из N атомов получается М молекулярных орбиталей. Если разность энергий самой нижней и самой верхней орбиталей равна А (несколько вольт), то разность энергий Отдельных молекулярных орбиталей будет АЕ/М (М имеет порядок числа Авогадро — 6,02-10 ). Таким образом, разность энергий молекулярных орбиталей мала (около 10-2 поэтому электроны легко могут переходить с одной молекулярной орбитали на другую [c.129]

    Из гетероатомных молекул на молекулу азота похожа по химическому строению и свойствам молекула монооксида углерода. Заселенность молекулярных орбиталей в СО точно такая же, как и в молекуле азота (рис. 56). Разница заключается только в структуре АО со стороны углерода участвуют в образовании МО четыре электрона, а со стороны кислорода — шесть. Порядок связи равен трем, т.е. соответствует кратности связи в СО согласно МВС. [c.92]

    Порядок связи характеризует электронную плотность в пространстве между связанными атомами. В классиче-хкой- (доквантовой) химии признавались только целочисленные порядки связей. В теории электронных смещений допускались отклонения от целочисленных порядков связей, выражаемые стрелочками, указывающими смещения электронной плотности. Однако порядок связи в этой теории не был определенной величиной. В рамках метода молекулярных орбиталей порядок связи (по Коул-сону) принимается равным сумме вкладов в данную связь каждой занятой молекулярной орбитали. Чтобы распределить эту величину, берется ириближение МО ЛКАО. Вклад одного электрона на молекулярной орбитали равен произведению коэффициентов, стоящих перед орбиталями атомов, между которыми осуществляется данная связь. [c.95]

    Расчеты молекулярных характеристик в методе МОХ. В методе МОХ устанавливают корреляции (соответствия) между характеристиками МО и свойствами молекул. Аналогично тому как это сделано для бензола, рассчитывают порядок связи и по корреляционному графику (см. рис. 48) определяют ее длину. Метод МОХ используется и для расчета энергии делокализации. Для бензола Ео = 2р (см. с. 117). Сравнив энергию реакции гидрирования бензола gHe (—209 кДж/моль) и трех молекул циклогексена gHio (—120 кДж/моль), находим Ео =2 =—151 кДж/моль. Полученная величина является не истинным, а эффективным значением р. Эту величину можно использовать, в свою очередь, для расчета энергии делокализации в производных бензола (табл. 11). Установлены корреляции между энергиями орбиталей по методу МОХ и спектрами. (Здесь эффективный параметр р имеет уже другое значение.) Они предсказывают в соответствии с опытом смещение полос в сторону низких частот для ряда бензолтрифенилен-> коронен. [c.119]

    Что такое молекулярная орбиталь Как устанавливают форму и 1Нергию молекулярных орбиталей и их число По каким признакам различают молекулярную орбиталь а) связывающую и разрыхляющую б) о- и л-типа По каким правилам составляют электронную конфигурацию молекулы Как электронная конфигурация молекулы влияет на порядок связи, ее энергию и длину Почему вещества бывают парамагнитными и диамагнитными  [c.44]

    В том случае, если строение двухатомной гомоядер-ной молекулы или иона рассматривают на основе метода молекулярных орбиталей, то число (порядок) связей определяют как полуразность между числами связывающих и разрыхляющих электронов. Согласно этой теории, в таких частицах, как Н2, Нг, Не , Сг, N2, Рг, Оа, Ог, Ог, О , число (порядок) связей (а значит, и валентность) равно 1 7г 2 3 1 2 1 7г 2 7г 1 соответственно, т. е. возможна дробная валентность, которую не допускает метод валентных связей. Таким образом эти два метода по-разному рассматривают понятие валентности атома в молекуле. [c.5]

    Два электрона в молекуле На занимают одну связывающую молекулярную орбиталь, образующуюся из ls-атомных орбиталей. Наличие двух электронов на одной молекулярной орбитали отражено в записи H2[(Os1s)2] верхним индексом. Молекула Нг стабильна, так как оба ее электрона занимают только связывающую о -орбиталь, энергия которой меньше энергии орбиталей отдельных атомов, порядок связи равен 1. [c.58]

    Таким образом, на МО внешнего энергетического уровня размес-тилось 10 электронов, из которых 8 находятся на связывающих орбиталях, а два — на разрыхляющей орбитали. Избыток связывающих электронов равен шести, порядок связи—трем. Образование молекулярных орбиталей в молекуле азота показано на рис. 29 [c.59]

    Чем больше эти коэффициенты, тем сильнее отличаются молекулярные орбитали от соответствующих атомных. Ч. Коулсон предложил для характеристики прочности связи ввести понятие порядок связи и определить его как произведение коэффициентов общий порядок связи при N электронах на данной занятой орбитали есть рц1 = 1.МС1С . Эти методы характеристики электронных состояний очень наглядно показывают, как физики, испытавшие затруднения, когда им пришлось отказаться от удобных Шариков-электронов, вращающихся по определенным орбитам, и вместо них пользоваться туманными электронными облаками, справились с практическими задачами. Фактическую электронную плотность стали выражать в долях заряда электрона, а прочность связи — в той электронной нагрузке на данную связь, представление о которой дают произведения коэффициентов в линейном выражении молекулярных орбиталей через атомные. [c.123]

    Если отнять один электрон у молекулы Ог, то в полученном молекулярном ионе О порядок связи будет равен 2,5, так как в разрыхляющих л-орбиталях на один электрон станет меньше. Напротив, при переходе О2 в отрицательно заряженные ионы OJ и О2 порядок связи понизится до 1,5 или I. Это отразится на энёргии и длине связи, которая в О равна 0,112, в О2 — 0,121, в О " —0,126 и в ОГ —0,149 нм. [c.69]

    Ароматический секстет здесь образуется при переходе неподе-ленной пары электронов гетероатома на молекулярную орбиталь соединения. Однако такой переход энергетически менее выгоден, чем в предыдущих случаях, и дает меньшую стабилизацию соединения, так как при этом должен образоваться частичный положительный заряд на гетероатоме и я-электронная избыточность соединения. Поэтому степень ароматичности рассматриваемых соединений зависит от природы гетероатома чем меньше его сродство к электрону, тем она выше. Во всех случаях, однако, в пятичленных гетероциклах имеется сильное нарушени-е выравненностн связей, причем порядок связей 2—3 и-4—5 значительно больше, чем в бензоле. Являясь электроноизбыточными, эти соединения значительно легче бензола вступают в реакции с электрофильными реагентами. [c.25]


Смотреть страницы где упоминается термин Молекулярные орбитали порядок связи: [c.86]   
Как квантовая механика объясняет химическую связь (1973) -- [ c.88 ]




ПОИСК





Смотрите так же термины и статьи:

Молекулярные орбитали а- и я-связи

Молекулярные орбитали орбитали

Орбиталь молекулярная

Порядок связи



© 2025 chem21.info Реклама на сайте