Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Иттрий восстановлением

    Можно ли применять металлический магний или кальций для получения металлического иттрия путем восстановления его галогенида при 298 К  [c.113]

    Для получения металлического иттрия широкое применение нашли три способа. В двух из них исходным сырьем служит фторид. Первый метод заключается в прямом восстановлении УРз литием описанным выше способом при 1575°. После переплавки в дуговой печи в вакууме содержание кислорода 0,14—0,20%. Основной фактор, влияющий на содержание кислорода в металле,— качество исходного фторида. 99%-ный металл получен из У з, очищенного пропусканием газообразного НР через расплав смеси УРз и Ь1Р при 1000°, восстановлением парами лития [148]. [c.143]


    В настоящее время разработан промышленный метод получения иттрия высокой чистоты восстановлением фторида кальцием в присутствии магния по схеме  [c.230]

    Восстановление смесью Са + Mg, а также некоторое варьирование состава флюса было проверено на фториде иттрия [769]. Из-за недостаточной тшпературы в данном случае получается только губчатый продукт. [c.23]

    При восстановлении тугоплавких металлов в шихту иногда вводят специальные добавки, образующие с восстанавливаемым металлом сплавы с пониженной температурой плавления Например, при восстановлении иттрия из УРз кальцием в шихту вводят магний для образования V — М -сплава, затем магний отгоняется в вакууме Образование сплавов сопровождается меньшением термодинамического потенциала системы Так получают, например, ферротитан и феррованадий, сплавы N1 — Т1, Си — Т1, Ъх — Сг и др [c.223]

    Пока известен только один метод амперометрического определения иттрия титрование его купфероном с. применением двух индикаторных платиновых электродов Разумеется, это титрование может быть выполнено и с одним индикаторным электродом по току окисления купферона на платиновом электроде при + 0,8 в (Нас. КЭ) или по току восстановления его на ртутном капельном электроде при —0,7 в (Нас. КЭ). Определение при помощи купферона не селективно, поскольку купферон реагирует с целым рядом других ионов. [c.222]

Таблица 14.4 Полярографическое восстановление иттрия, лантана и редкоземельных элементов Таблица 14.4 <a href="/info/306140">Полярографическое восстановление</a> иттрия, лантана и редкоземельных элементов
    Для получения силицидов пользуются различными методами непосредственным взаимодействием металлов с кремнием путем спекания или сплавления при температуре около 1400° С восстановлением окислов РЗЭ металлическим кремнием в вакууме при 1500° С с непрерывным удалением образующейся при реакции летучей моноокиси кремния ЗЮг электролизом расплавленных сред. В работе Г. В. Самсонова [753] подробно описаны отдельные опыты по получению силицидов скандия, иттрия и РЗЭ и приведены все имеющиеся в литературе данные по их физическим свойствам. [c.287]

    Металлотермическим восстановлением получают как торий, так и все РЗЭ, скандий и иттрий. Восстанавливают чаще всего хлориды или фториды, пользуясь металлическим кальцием или магнием. [c.329]


    Восстановление хлорида иттрия натрием. ....... 85  [c.877]

    Восстановление хлорида иттрия литием. ....... 99,8 0,16 0,006 0,007  [c.877]

    Восстановление фторида иттрия литием. ....... 99,9 — — — -  [c.877]

    Получение промежуточного сплава путем восстановления фторида иттрия кальцием с цинком или магнием с последующей вакуумной очисткой ит ия металл получен в — 0,50 0,04 0,03 0,02 0,02 0,02 0,70  [c.877]

    В работе [472] использован металлический иттрий 96,5%-ной чистоты, полученный методом восстановления фторида иттрия кальцием. Технический иттрий имеет большую прочность и твердость и меньшую пластичность, чем церий, лантан и празеодим. [c.890]

    Л. А. Ижванов и Н. П. Верщинин [473] разработали метод получения металлического иттрия восстановлением фторида иттрия кальцием с последующей очисткой иттрия от кальция переплавкой в вакууме, Они получили таким путем металлический иттрий чистотой 98,85% следующего состава  [c.879]

    У фторидов различные кристаллические решетки у РЗЭ цериевой подгруппы — гексагональная, у подгруппы иттрия —орторомбическая или гексагональная [26]. Фториды РЗЭ — главный исходный продукт для получения металлов и их сплавов электролизом, металлотермическим восстановлением магнием, кальцием и другими металлами. Фториды элементов от Ьа до Рг почти не реагируют с углеродом, а ЗтРз восстанавливается углеродом до ЗтРа [91]. Фториды РЗЭ имеют высокие температуры плавления и кипения (табл. 20) [2, 92]. Термическое [c.70]

    Из концентратов иттриевой подгруппы прежде всего отделяют иттрий, после чего получают концентраты, а затем и чистые индивидуальные соединения РЗЭ. Для разделения РЗЭ применимы следующие методы 1) дробная кристаллизация и дробное осаждение 2) избирательное окисление — восстановление 3) термическое разложение солей 4) ионный обмен 5) экстракция. [c.107]

    Второй метод получения металлического иттрия основан на образовании промежуточного сплава Y-Mg при восстановлении УРз кальцием. Процесс ведут в титановом тигле при 900—960° в атмосфере аргона. В состав шихты, помимо УРз и 10%-ного избытка Са, вводят безводный СаС1, и Mg. Получается сплав, содержащий 24% Mg. Выход металла > 99%. Mg и Са удаляются в вакууме (3-10" мм рт. ст.) при 900—950°. Содержание их после этого в иттрии 0,01 %. Компактный металл получают, переплавляя губку в дуговой печи в атмосфере гелия остаточное давление 10 мм рт. ст. Содержание кислорода в конечном продукте 0,12—0,25%. Уменьшить содержание кислорода до 0,1% можно, используя в качестве восстановителя литий или сплав Са-Ы. Еще более чистый металл получается, если брать шихту из УРз, Mgp2, ЫРи восстановитель—литий. Смесь фторидов после обработки фтористым водородом восстанавливают при 1000°, в результате получается сплав У-Mg и шлак из Ь1Р. После отгонки магния содержание кислорода в иттрии 0,05—0,15%. Рекомендуется также рафинировать сплавы У-Mg, экстрагируя расплавленными солями кислородсодержащие примеси. С этой целью сплав Y-Mg расплавляют и перемешивают со смесью УРз и СаС12 в атмосфере инертного газа при 950°. Содержание кислорода в конечном продукте 0,05% [148, стр. 136— 148]. [c.143]

    Дальнейшее восстановление иодата до иода происходит медленно при концентрации HNO3 ниже 4,5jV. Это обстоятельство позволяет осуществлять осаждение тория в сравнительно сильно азотнокислой среде, в которой иодаты трехвалентных р.з.э. растворимы. Однако указывают [1834], что при этом лантан соосаждается на 0,49, а иттрий — на 0,075%. При использовании двухкратного осаждения метод обеспечивает количественное отделение тория от больших количеств р.з.э. и фосфатов. Мешают Zr, Ti, и Fe . Уран, по-видимому, не мешает. Метод чрезвычайно эффективен для определения тория в монацитовом песке. [c.38]

    Сами металлы получаются путем электролиза расплавленных хлоридов или фторидов. Они белого или бледиожелтого цвета и весьма устойчивы иа воздухе. Плотность их колеблется в пределах 6,15 (лантан) и 7,7 (самарий) плотность церия 7,04. Они являются хорошими восстановителями и могут применяться вместо металлического магния. Иттрий ие был лолу-чен в совершенно чистом виде. В нечистом состоянии он представляет собой серый порошок. Ом имеет высокую точку плавления и сгорает в окись. Получают его путем электролиза расплавленного хлорида иттрия и иатрия или путем восстановления металлическим магнием. [c.606]

    Высококачественные осадки железа из неводных растворов не получены. В основном они плохо сцеплены с поверхностью подложки [414, 490]. Однако количественно осадить железо из неводных сред можно. В частности, диметилформамидный раствор хлорного железа используют в злектроаналитической химии для отделения его от иттрия. Электролиз раствора РеС1з в ДМФ при 50 °С приводит к 100 %-ному восстановлению железа на омедненном злектроде Фишера [430]. [c.165]

    Гадолиний и иттрий также не удается получить восстановлением хлоридов кальцием, так как при температуре, достаточной для расплавления получаемых металлов, хлорид кальция сильно вспенивается, что делает невозможным отделение металла от шлака. Проблема разрешается заменой хлоридов на фториды. Фториды менее гигроскопичны, а в результате восстановления образуется стабильный фторидный шлак, что обеспечивает полное разделение металла и шлака. Кроме того, применение танталовых тиглей сильно снизило загрязнение металла мате-риало тигля. Методом восстановления фторидов кальцием можно получить все редкоземельные металлы, кроме самария, европия и иттербия. [c.229]


    Оксисульфиды типа ЬпгОаЗ. Оксисульфиды получают прокаливанием сульфидов на воздухе или нагреванием смесей сульфидов с окислами. Они образуются также при прокаливании на воздухе любых сульфидов иттрия (наряду с сульфатом) [930], при нагревании СбгЗз в атмосфере влажного водорода при 500°С [927], по реакции между полуторными сульфидами и окислами [ 1603] или окса-латами [928] при 1350° С или, наконец, восстановлением основных сульфатов водородом при 1200—1300°С [886]. [c.37]

    Метилформиат с мольным выходом 35—40% за переход может также быть получен димеризационным дегидрированием метанола над восстановленным медным катализатором, промотированным металлами III или IV группы (цирконий, иттрий), причем мольная селективность по метилформиату достигает 957о [398]. [c.63]

    Бадо-Ламблинг [86] построил кривые поляризации для окисления церия (III) на платиновых анодах 100%-ная эффективность тока достигается только в том случае, когда концентрация окисляемого вещества достаточно велика, так что сопутствующее окисление воды остается пренебрежимо малым. По данным Шульца [140], потенциостатическая кулонометрия может использоваться для определения европия в 0,1 н. растворе НС1. Восстановление европия (III) до европия (II) на ртутном катоде ни в одном из испытанных Шульцем электролитов не проходило при 100%-ной эффективности тока. Когда европий восстанавливается при —0,8 в относительно AgjAg l и затем снова окисляется при —0,1 в и при прочих равных условиях, электролиз является почти точным. Шульц определил, что малые количества галлия, иттрия, иттербия, лантана, церия, кальция, алюминия, кремния или железа не являются помехой при этом определении. Используя катод из амальгамы лития, Онстотт [141] отделял европий от самария и самарий от гадолиния [142] в среде цитрата. [c.63]

    Экстракция железа из солянокислой среды раствором триоктил-фосфинокиси в циклогексане применена для последующего фотометрического определения железа с помощью 1,10-фепаптролина. Последний прибавляют после разбавления экстракта изопропиловым спиртом и добавления гидрохинона для восстановления железа. Полученный комплекс фотометрируют через 2 часа при 510 ммк. Метод предложен для определения железа в металлическом бериллии и окиси бериллия. Аналогичный вариант анализа описан для фотометрического определения железа в металлическом иттрии и в [c.233]

    Ист В 1794 г, Гадолин открыл неизвестный окисел — иттриевую землю. Из нее Вёлер в 1828 г. получил иттрий путем восстановления хлорида.натрием, [c.147]

    Было замечено, что потенциал, при котором в диметилсульфоксиде образуется надперекись, заметно зависит от присутствия ионов металлов [101]. При полярографическом исследовании и препаративном электролизе было установлено, что при добавлении различных ионов — цинка, стронция, таллия, кадмия или иттрия — образуется новая волна, находящаяся при более положительном потенциале, чем волны восстановления кислорода или металла [102]. Установили, что продуктами реакции являются надперекиси металлов 2п(02)г, Sr(02)2, TIO2, d(02)2 или 02(02)3- [c.447]

    Так, этот эффект нашел применение в радиоактивационном методе определения следов иттрия, диспрозия, гольмия, самария и лантана в окиси европия (чувствительность 10 —10 %). Основная масса европия отделялась путем его восстановления до Ей(II) металлическим цинком в редукторе Джонса. Редуктор соединен с хроматографической колонкой, наполненной фторопластом-4 с Д2ЭГФК. Ей(II) количественно проходит через колонку, тогда как следы всех- других редкоземельных элементов в степени окисления 3-f- задерживались на колонке. Результаты анализа высокочистой окиси европия представлены в табл. 2. [c.434]

    Потенциал полуволны восстановления РЗЭ на капельном ртутном электроде составляет около —1,8 в 56]. Такую же величину имеют и потенциалы скандия и иттрия. В табл. 63 были приведены потенциалы восстановления щелочных металлов нз ртути. Сопоставляя величины этих потенциалов с потенциалом полуволны РЗЭ (—1,8 в), видим, что только на фоне солей лития можно избежать совместного восстановления РЗЭ и щелочного металла. Поэтому имеющиеся в литературе данные по полярографии РЗЭ обычно получены на фоне хлорида лития. На фоне комплексообразователей волна восстановления РЗЭ исчезает, так как потенциал восстановления РЗЭ настолько сдвигается в сторону отрицательных значений, что восстановление щелочного металла или водорода происходит раньше и полностью маскирует волну РЗЭ. Это было экспериментально подтверждено С, И. Якубсон и Н. А. Костроминой 778], изучавшими полярографическое поведение лантана, церия, самария, неодима и иттербия на различных фонах не удается получить волну РЗЭ и на фоне йодида тетраметиламмония. 1/г иттербия наименее отрицателен из всех изученных указанными авторами РЗЭ — он составляет —1,4 в в растворах хлоридов (эта величина хорошо согласуется с приводимой в литературе [55] для реакции УЬ +-)- Ь + на фоне хлорида аммония) и сдвигается в сторону отрицательных значений на фоне комплексообразователей  [c.298]

    Для получения металлических РЗЭ, скандия, иттрия и тория применяются в основном два метода электролиз расплавленных солей и металлотер.мическое восстановление. Для получения особо чистого тория применяют также описанный выше метод термической диосоциации йодида [640]. [c.326]

    Что асается электрохимических методов, то они применяются для определения РЗЭ и тория пока не очень ш(ироко. Выше были описаны полярографические методы, практическое применение которых пока еще ограничено, и методы электролиза с ртутным катодом или цементации амальгамами, которые, помимо технологического, имеют и аналитическое значение. Разработано несколько амперометрических методов например церий (III) титруют феррицианидом на платиновом электроде по току восстановления феррицианида [905], церий (IV) титруют раствором четырехвалентного ванадия [906] цли щавелевой кислотой (метод разработай А. А. Устимовым при участии автора настоящей книги) для иттрия рекомендован метод ампероме-рического титрования купферроном [907], для тория — трилоном при pH = 2 2,5 [908]. [c.341]

    Металлический иттрий, полученный методом восстановления фторида иттрия кальцием, ямеет серебристый цвет. При длительном хранении на воздухе иттрий окисляется, покрываясь сероватым налетом окислов. С водородом итприй образует гидрид (УзНз) карбид иттрия образуется при нагревании окиси иттрия с углеродом [237]. [c.891]

    Ро (Ро ). При медленном растворении элементарного полония в соляной кислоте образуется Ро +, который получается также восстановлением Ро" + в солянокислой среде сернистым газом. Сероводородом в присутствии Biз+ из такого раствора осаждается В128з, с которым соосаждается полоний. После действия мягких восстановителей на соединения Ро происходит изоморфная сокристаллизация полония с (МН4)з1гЗ+С1б, карбонатным комплексом лантана (III), иттрия и скандия, возможно вследствие образования иона Ро ". В этом состоянии полоний также [c.367]

    Металлы, Наиболее легкие металлы (лантан — гадолиний) получают восстановлением трихлоридов кальцием при 1000°С или более высокой температуре. Для тербия, диспрозия, гольмия, эрбия, тулия, а также иттрия используют фториды, поскольку хлориды слишком летучи. Прометий получают при восстановлении РтРз литием. Европий, самарий и иттербий восстанавливаются кальцием только до дигалогенидов. Эти металлы получают восстановлением их оксидов литием при высокой температуре. [c.528]


Смотреть страницы где упоминается термин Иттрий восстановлением: [c.38]    [c.144]    [c.144]    [c.482]    [c.223]    [c.189]    [c.63]    [c.293]    [c.669]    [c.669]    [c.296]    [c.879]   
Неорганическая химия Том 2 (1972) -- [ c.38 , c.39 ]




ПОИСК





Смотрите так же термины и статьи:

Иттрий



© 2025 chem21.info Реклама на сайте