Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Осмий химические свойства

Таблица 35 Физико-химические свойства оксидов рутения и осмия Таблица 35 <a href="/info/754265">Физико-химические свойства оксидов</a> рутения и осмия

    ПЛАТИНОВЫЕ МЕТАЛЛЫ — груп па сходных между собой по физическим и химическим свойствам металлов рутений Ru, родий Rh, палладий Pd, осмий Os, иридий Ir, платина Pt. В природе встречаются вместе с платиной. Все П. м. стойки к химическим реагентам, образуют многочисленные комплексные соединения. [c.193]

    Классификация металлов . Металлы составляют большую часть всех элементов в периодической системе Д. И. Менделеева, но в технике они классифицируются по иным признакам. До настоящего времени не разработана научно обоснованная классификация металлов. В практике получили применение исторически сложившиеся классификации, базиру.ющиеся на таких признаках металлов, как их распространенность в природе, применимость, физические и частично химические свойства. Металлы делятся на черные и цветные. К черным металлам относятся железо, марганец, хром и сплавы на их основе, к цветным — все остальные. Цветные металлы делятся на 4 группы 1) тяжелые медь, свинец, олово, цинк и никель 2) легкие алюминий, магний, кальций, калий и натрий часто к этой группе относят также барий, бериллий, литий и другие щелочные и щелочноземельные металлы 3) драгоценные, или благородные платина, иридий, осмий, палладий, рутений, родий, золото и серебро 4) редкие а) тугоплавкие  [c.115]

    Рутений и осмий — аналоги железа, но по химическим свойствам они от железа довольно сильно отличаются. У этих элементов в соединениях большой набор степеней окисления,. [c.395]

    Радиусы атомов ниобия и тантала, а также радиусы их ионов (Э ") очень близки из-за лантаноидного сжатия. Это объясняет большое сходство их физико-химических свойств. В свободном состоянии ванадий, ниобий и тантал весьма стойки к химическим воздействиям и обладают высокими температурами плавления. Эти металлы вместе с хромом, молибденом, вольфрамом, рением, а также рутением, родием, осмием и иридием (см. ниже) относятся к тугоплавким металлам. Тугоплавкими условно считают те металлы, температура плавления которых выше, чем хрома (1890°С). Тугоплавкие металлы и их сплавы играют большую роль в современной технике. [c.286]

    Существенный вклад внесла аналитическая химия в решение такой важной проблемы современной науки, как синтез и изучение свойств трансурановых элементов. Предсказание химических свойств трансурановых элементов оказалось более сложным, чем для элементов, входящих в периодическую систему в ее старых границах, так как не было ясности в распределении новых элементов по группам. Трудности усугублялись и тем, что до синтеза трансурановых элементов торий, протактиний и уран относились соответственно к IV, V и VI группам периодической системы в качестве аналогов гафния, тантала и вольфрама. Неправильное вначале отнесение первого трансуранового элемента № 93 к аналогам рения привело к ошибочным результатам. Химические свойства нептуния (№ 93) и плутония (№ 94) показали их близость не с рением и осмием, а с ураном. Было установлено, что трансурановые элементы являются аналогами лантаноидов, так как у них происходит заполнение электронного 5/- слоя, и, следовательно, строение седьмого и шестого периодов системы Д. И. Менделеева аналогично. Актиноиды с порядковыми номерами 90—103 занимают места под соответствующими лантаноидами с номерами 58—71. Аналогия актиноидов и лантаноидов очень ярко проявилась в ионообменных свойствах. Хроматограммы элюирования трехвалентных актиноидов и лантаноидов были совершенно аналогичны. С помощью ионообменной методики и установленной закономерности были открыты все транс-кюриевые актиноиды. Рекордным считается установление на этой основе химической природы элемента 101 — менделевия, синтезированного в начале в количестве всего 17 атомов. Аналогия в свойствах актиноидов и лантаноидов проявляется также в процессах экстракции, соосаждения и некоторых других. Экстракционные методики, разработанные для выделения лантаноидов, оказались пригодными и для выделения актиноидов. [c.16]


    Положение металла в периодической системе элементов Д. И. Менделеева не характеризует в общем виде стойкость металлов против коррозии главным образом потому, что она зависит не только от природы металла, но и от внешних факторов коррозии. Однако некоторую закономерность и периодичность в повторении коррозионных характеристик металлов наряду с их химическими свойствами в периодической системе установить можно. Так, наименее коррозионно стойкие металлы находятся в левых подгруппах I группы (литий, натрий, калий, рубидий, цезий) и И группы (бериллий, магний, кальций, строиций, барий) наиболее легко пассивирующиеся металлы находятся в основном в четных рядах больших периодов в группах V (ванадий, ниобий, тантал), VI (хром, молибден, вольфрам, уран) и VIII (железо, рутений, осмий, кобальт, родий, иридий, никель, пал- [c.37]

    Малая избирательность реагентов, применяемых для определения платиновых металлов и золота, часто вызывает необходимость предварительного отделения определяемого элемента от сопутствующих ему металлов. В ходе анализа сложных материалов, содержащих все благородные металлы, последние, обычно, концентрируются совместно на одной из стадий анализа. Поэтому часто вначале прибегают к групповому разделению, к отделению друг от друга нескольких металлов, наиболее близких по химическим свойствам, а затем ищут пути разделения отдельных элементов. Для группового разделения используют различия в окислительно-восстановительных свойствах благородных металлов. Окислители (броматы, хлор) служат для отделения осмия и рутения от остальных благородных металлов. Восстановители (каломель, хлористую медь) применяют для отделения платины, палладия и золота от родия и иридия. Наиболее частыми сочетаниями металлов, получаемыми в результате группового разделения, являются осмий и рутений платина, палладий и золото родий и иридий. Для группового разделения, а также для отделения металлов друг от друга наряду с химическими применяют хроматографические и экстракционные методы. [c.218]

    Металлы и сплавы на их основе классифицируют по физическим и химическим свойствам. Анализируя свойства металлов, образованных элементами той или иной группы периодической системы, нетрудно отнести их к легким (например, литий всплывает даже в легкой фракции бензина, его плотность 0,53 г/см ) или тяжелым (например, у осмия плотность 22,61 г/см ), легкоплавким (Hg имеет т, пл. -38,86° С) или тугоплавким ( / имеет т. пл. 3420°С), мягким и твердым, пластич- [c.254]

    Как видно из табл. 64, у атома железа нет вакантных подуровней, что ограничивает возможность возбуждения его электронов у атома Ни весь подуровень 4/ свободен, у атома Оз два свободных подуровня 5/ и 5 . Поэтому высшее окислительное число железа +6, а рутения и осмия +8. Достройкой электронны.х уровней у атомов -металлов в конечном итоге определяются физические и химические свойства. -Металлы широко используются в качестве конструкционных материалов. Медь, железо, золото и серебро были известны ещ,е в глубокой древности. Давно используются в технике такие металлы, как 2п, N1, Со, Мп, Сг и . Но в последние десятилетия вовлечены в сферу применения Т , 2г, V, ЫЬ, Та, Мо, Ке и платиновые металлы. Современные методы металлургии позволили получать эти металлы высокой степени чистоты. Большинство -металлов было открыто еще в прошлом веке. И только технеций и рений открыты в нашем столетии (Не — в 1924 г. Идой и Вальтером Ноддак Тс — в 1937 г. из молибдена в результате ядерной реакции). Использование -металлов в качестве конструкционных материалов в современной технике позволило решить ряд сложных технических проблем. [c.322]

    Сиборг и его сотрудники, пользуясь очень малыми количествами веществ, сумели получить значительную информацию о химических свойствах трансурановых элементов. Они установили, что в то время, как уран по свойствам подобен вольфраму, поскольку проявляет ярко выраженную тенденцию давать соединения в состоянии окисления -Ь6, последующие трансурановые элементы не похожи на рений, осмий, иридий и платину они проявляют все возрастающее стремление к образованию ионных соединений, в которых их состояние окисления равно +3. Такое поведение аналогично поведению редкоземельных металлов. [c.613]

    Шесть элементов — рутений, родий, палладий, осмий, иридий и платину — часто называют платиновыми металлами. Такое объединение этих элементов в одну группу иногда наводит на мысль о сходстве их химических свойств. На самом деле это не совсем так. Фториды этих металлов могут служить хорошим примером различия их химических свойств. [c.378]

    Металлохимия. Платиноиды образуют непрерывные твердые растворы между собой и с элементами триады железа, а также с элементами УПВ- и 1В-групп. Интересно отметить, что рутений и осмий образуют непрерывные твердые растворы с марганцем, технецием и рением, а палладий и платина — с медью, серебром и золотом, что подтверждает горизонтальную аналогию, отмеченную ранее в химических свойствах этих элементов. Палладий и платина непрерывно взаимно растворимы со всеми элементами триады железа (с железом в 7-модифи-кации), между собой и со всеми ближайшими соседями в горизонтальных триа-500 [c.500]


    По своим химическим свойствам рутений и осмий напоминают железо и марганец, родий и иридий — кобальт, палладий — серебро, а платина — золото. [c.999]

    Было приготовлено и обследовано большое количество лабораторных и опытных образцов различных катализаторов на основе палладия, платины, осмия, рутения, рения, гептасульфида рения, а также никеля, хромита меди и др. Также было изучено влияние различных растворителей на процесс восстановления, некоторые физико-химические свойства хлоранилинов и хлорнитробензолов, термическая стойкость хлор- и дихлоранилинов, очистка сточных вод производства хлоранилинов. Кроме того, были детально исследованы коррозионные вопросы и аналитический контроль процесса, выполнено математическое описание макрокинетики процесса восстановления 3,4-дихлорнитробензола. Принимая во внимание высокую токсичность исходных и конечных продуктов, были проведены исследования по их токсикологии. [c.4]

    Структура атомов элементов, включающих 32-электронный слой з-, р , й , / ), который сформировался у лантаноидов (л=4, 7= ==58—71),— лантаноидное сжатие (уменьшение радиуса атомов) — от лантаноидов распространяется на последующие элементы, что сказывается на свойствах элементов с 2>71 (начиная с НГ). Например, плотность металлов от НГ до Аи — Hg примерно вдвое больше плотности -металлов пятого периода (2>39, начиная с 2г). Это закономерно, так как атомные массы -металлов, расположенных после лантаноидов, приблизительно вдвое больше атомных масс их аналогов в пятом периоде, а атомные радиусы (у 2г 0,160 нм, у НГ 0,159 нм и т. д.), и, следовательно, атомные объемы близки. Максимальную плотность имеет осмий (22,5 г/см . Химические свойства -элементов пятого и шестого периодов сходны. Так, 2г по свойствам ближе к Н5, чем к Т1 МЬ ближе к Та, чем к V Мо — к Ш, чемкСг Тс—к Ке, чем к Мп Ru— кОз, чем к Ре НЬ — к 1г, чем к Со Рс1 — к Р1, чем к N1 Ag — к Аи, чем к Си С(1 — к Hg, чем к 2п, [c.89]

    Несмотря на то что Сиборг и его сотрудники имели в своем распоряжении очень малые количества этих веществ, им удалось получить значительную информацию о химических свойствах трансурановых элементов. Они установили, что в то время как уран по свойствам похож на вольфрам, поскольку проявляет ярко выраженную тенденцию давать соединения в окислительном состоянии 6 Ь, последующие трансурановые элементы не похожи на рений, осмий, иридий и платину они проявляют возрастающую тенденцию к образованию ионных соединений, в которых их окислительное число равно 3+. Такое поведение аналогично поведению редкоземельных металлов. Все эти факты учтены при составлении периодической таблицы, приведенной в гл. V, [c.546]

    Нахождение, физические и химические свойства. Осмий представляет вместе с иридием главную составную часть встречающегося в платиновой руде осмистого иридия. Его окраска голубовато-белая, подобная цинку. Из всех платиновых металлов осмий имеет наивысшую т. пл., лежащую около 2700°. Осмий находит применение в промышленности, в виде сплава с вольфрамом и хромом, в качестве калильных нитей в электрических лампах. По сравнению с иридием его влияние на твердость платины почти в три раза больше. Платиновые сплавы с 15—25% иридия вследствие этого могут быть заменены сплавом с 6—10% осмия. [c.358]

    Как видно, у атома железа нет вакантных подуровней, что ограничивает возможность возбуждения его электронов у атома Ди весь подуровень 4/ свободен, у атома Оз два свободных подуровня 5/ и 5 . Поэтому высшее окислительное число железа +6, а рутения и осмия +8. Достройкой электронных уровней у атомов -металлов в конечном итоге определяются физические и химические свойства. [c.305]

    Будучи уверенным в правильности открытого им периодического закона, Д. И. Менделеев счел атомные веса этих элементов неправильными и, расставив их по своим местам в соответствии с их химическими свойствами, теоретически вычислил их атомные веса. Так, Д. И. Менделеевым были исправлены атомные веса 10 элементов, в том числе для бериллия (№ 4), титана (№ 22), цезия (№ 58), осмия (Л 9 76), иридия (№ 77) и т. д. Впоследствии, уже другими учеными, на основании периодической системы, были исправлены атомные веса еще 20 элементов. [c.198]

    Химические свойства актинидов. Если бы уран и заурановые элементы были аналогами не редкоземельных элементов, а вольфрама, рения, осмия и т. д., то по мере перехода к более тяжелым элементам устой- [c.151]

    Элементы, подобные по химическим свойствам, имеют атомные веса или приблизительно одинаковые (платина, осмий) или правильно возрастающие (калий, рубидий, цезий). [c.27]

    По химическим свойствам марганец и рений существенно огли-чаются друг от друга. Марганец является довольно сильным восстановителем, репий же более сходен со своими соседями по периоду — вольфрамом и осмием, чем с марганцем. Для рения характерна пассивность при низких температурах и устойчивость соединений, в которых он проявляет высшую степень окисления +7 [c.290]

    В У1ИБ группу Периодической системы входят три триады элементов в 4-м периоде — железо Ре, кобальт Со и никель N1 (семейство железа), в 5-м периоде — рутений Ки, родий РЬ и палладий Р<1 (легкие металлы семейства платины) и в 6-м периоде—осмий Оз, иридий 1г и платина Р1 (тяжелые металлы семейства платины). Таким образом, в этой группе прослеживается изменение химических свойств как внутри периода (вдоль триад), так и внутри вертикальных последовательностей (Ре—Ки—Оз, Со—КН—1г, N1—Рс1—Р1). Для рассмотрения общей характеристики элементов УП1Б группы наиболее удачным пре.дставляется деление на семейства железа (3 элемента) и платины (6 элементов). [c.243]

    Химические свойства. Платиновые металлы характеризуются малой химической активностью. Стандартные электродные потенциалы платиновых металлов имеют положительные значения от +0,45 до +1,2 в. Платиновые металлы в компактном состоянии реагируют с кислородом, галогенами и другими окислителями только при нагревании до высоких температур. Наиболее химически актпв-вым из всех платиновых металлов является осмий, затем рутений, наименее активны иридий и платина. [c.142]

    Химические свойства соединений элементов VIII группы периодической системы в целом изменяются при переходе от легких к тяжелым аналогам, подчиняясь тем же закономерностям, что и свойства соединений переходных элементов других групп. Так, при перемещении по группе сверху вниз возрастает устойчивость соединений, содержащих элемент в высшей степени окисления (см. табл. 1.15). Действи-лельно, если даже для железа наиболее характерной степенью окисления является +2 и +3 ( шести - и особенно восьмивалентное железо неустойчиво), то для осмия вполне стабильны соединения с наиболее высокой для элементов периодической системы степенью окисления -Ь8. Такая же закономерность наблюдается при переходе от Со и Ni к их тяжелым аналогам. Например, для Ni наиболее устойчивы соеди- [c.111]

    Химические свойства. Железо является металлом со средней восстановительной активностью. При окислении его слабыми окислителями получаются производные двухвалентного железа сильные окислители переводят его в трехвалентное состояние. Эти два валентных состояния являются наиболее устойчивыми, хотя известны соединения железа с валентностью 1, 4 и 6. Являясь аналогом рутения и осмия (аналогия по подгруппе), железо имеет также много сходного с кобальтом и никелем (аналогия по периоду). При определенных условиях оно вступает в реакции почти со всеми неметаллами. При невысоких температурах (до 200° С) железо в атмосфере сухого воздуха покрывается тончайшей оксидной пленкой, предохраняющей металл от дальнейшего окисления. При высокой температуре оно сгорает в атмосфере кислорода с образованием Fe Oi. Во влажном воздухе и кислороде окисление идет с получением ржавчины 2Fe20a HgO. Галогены активно окисляют железо с образованием галидов FeHlgj или FeHlgg (иодид железа (III) не образуется). При нагревании железо соединяется с серой и селеном, образуя сульфиды и селениды. В реакциях с азотом и фосфором получаются нитриды и фосфиды в случае малых концентраций азота образуются твердые растворы внедрения. Нагревание с достаточным количеством [c.348]

    Получают рений восстановлением перрената калия KReOi, а в компактное состояние переводят методом спекания. По химическим свойствам он похож на вольфрам и осмий. В компактном состоянии рений пассивируется кислородом воздуха, но в порошке сгорает в кислороде с образованием оксида рения (VI ReaO,. [c.421]

    Ориентация прежде всего на физическую идентификацию новых элементов объяснялась главным образом аномальными химическими свойствами первых трансуранов. Вопреки ожиданиям нептуний и плутоний оказались больше похожи на уран, чем на рений и осмий. А ведь по логике периодической системы (как представлялось в то время) элементы № 93 и 94 должны были занять места в VII II VIII группах. [c.407]

    Под названием актиниды объединяются элементы с порядковыми номерами 89—103 включительно. До открытия трансурановых элементов торий Z = 90), протактиний (2 = 91) и уран 2 = 92) включались в IV, V и VI группы периодической системы соответственно и считались аналогами вышестоящих гафния, тантала и вольфрама. Однако отмечалось, что эта аналогия не является полной ввиду отклонений свойств элементов и их соединений от закономерностей, наблюдаемых в гомологическом ряду. Когда были открыты трансурановые элементы — нептуний и плутоний,—оказалось, что они по химическим свойствам отличаются от предполагаемых аналогов и напоминают более уран, чем рений и осмий. Исследование нептуния и плутония, а также открытых затем трансплутониевых элементов показало, что эти элементы в одинаковом валентном состоянии очень сходны друг с другом и все вместе напоминают группу лантани-дов, особенно в трехвалентном состоянии. Поэтому они и объединены [I] в семейство актинидов. По аналогии с лантанидами предполагалось, что семейство актинидов объединяет 14 элементов половина из них в о время не была еще открыта. [c.489]

    Разработкой отдельных вопросов химии рутения в различные годы занимались многие известные химики Берцелиус, Сент-Клер-Девилль, Дебрэ, Реми, Вернер и др. Было установлено, что по некоторым химическим свойствам рутений близок к железу, а по другим — к родию и особенно к осмию, что он может проявлять несколько валентностей, что устойчивый окисел рутения имеет формулу ВиОз- [c.247]

    Некоторые типичные реакции я-циклопентадиенилжелезокар-бонильных комплексов представлены на рис. 32. Химические свойства производных рутения и осмия, очевидно, аналогичны, хотя они еще мало изучены. [c.162]

    Прежние представления, согласно которым элементы 93, 94, 95 являются аналогами рения, осмия и иридия, то есть должны проявлять те же химические свойства, были разрушены с открытием нептуния и плутония в этом месте периодическая система элементов была неверна Экарений — нептуний и экаосмий — плутоний, как ни странно, совершенно не имели сходства с рением или осмием. Поэтому Сиборг предположил, что трансураны вместе с ураном относятся к новой группе элементов, являющихся преимущественно [c.155]

    Открытие элемента с атомным номером, большим чем 92, последовало п 1940 г. в результате работы Е. М. Макмиллана и П. X. Абсльсоиа (см. гл. 2), Вскоре после этого был открыт плутоний его нaпJЛн в конце 1940 г. автор данной книги, Е. М. Макмиллан, Дж. У. Кеннеди н А. Ч. Уол. Химические эксперименты с индикаторными количествами нептуния и плутония показали, что их химические свойства во многом напоминают соответствующие свойства урана и совершенно непохол> и на свойства рения и осмия. [c.61]


Смотреть страницы где упоминается термин Осмий химические свойства: [c.183]    [c.332]    [c.365]    [c.426]    [c.170]    [c.231]    [c.116]    [c.75]    [c.61]   
Неорганическая химия Том 2 (1972) -- [ c.618 , c.620 , c.630 , c.631 ]




ПОИСК





Смотрите так же термины и статьи:

Осмий

Осмий осмий

Осмий, свойства



© 2025 chem21.info Реклама на сайте