Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Скорость пересыщения

    Кристаллизатор-градирня, в котором воздушное охлаждение раствора достигается его разбрызгиванием с помощью форсунок внутри шахты мелкие капли при падении быстро охлаждаются и внутри их появляются кристаллы суспензия собирается в поддоне большая скорость пересыщения приводит к образованию мелкокристаллического продукта. [c.252]

    На скорость роста, совершенство формы и размеры кристаллов, кроме физико-химических свойств кристаллизующегося вещества, оказывают большое влияние степень и скорость пересыщения раствора, интенсивность его перемешивания, наличие растворимых примесей и температура кристаллизации. [c.687]


    Таким образом, в зависимости от соотношения между скоростью пересыщения пара и концентрацией капелек (ядер конденсации) возможны два предельных случая  [c.380]

    Для характеристики затруднений, возникающих нри попытке сравнения теоретических выводов с опубликованными экспериментальными данными, приведем некоторые результаты, взятые из диссертации Фишера (Рига, 1913 г.). На рис. 7 приведена серия кривых (в координатах пересыщения — время) при кристаллизации сернокислого калия для различных начальных пересыщений. На рис. 8 даны некоторые из этих кривых, перечисленные нами, в координатах скорость — пересыщение (в долях начального). [c.120]

    Теснер рассматривает образование сажи при термическом разложении углеводородов как физико-химический процесс возникновения новой твердой фазы, подчиняющийся двум одновременно развивающимся стадиям образованию зародышей новой фазы и их росту. Скорости этих процессов определяются главным образом степенью пересыщения системы (т. е. отношением давления пара конденсирующегося вещества к давлению его насыщенного пара над плоской поверхностью). Термодинамически наиболее трудной и требующей наибольшего пересыщения стадией является образование зародышей. Рост образовавшихся зародышей происходит быстро при меньшем пересыщении системы, сильным падением которого он всегда сопровождается. Скорость образования зародышей зависит от скорости пересыщения системы. Скорость процесса в целом и дисперсность получаемого вещества зависят от скорости образования зародышей и, следовательно, от степени пересыщения системы. В процессе сажеобразования пересыщение системы обусловлено повышением температуры. Таким образом, чем быстрее возрастает температура углеводорода, тем больше скорость образования зародышей и тем выше должна быть дисперсность получающейся сажи. Выход сажи зависит от температуры. [c.135]

    Дисперсность получающейся сажи зависит прежде всего от скорости образования зародышей, которая в свою очередь зависит от скорости пересыщения. [c.9]

    При большой скорости охлаждения раствора уменьшение концентрации в нем парафина не будет успевать за снижением его растворимости, и высокая степень пересыщения, при которой может идти новообразование кристаллических зародышей, будет сохраняться более длительное время до тех пор, пока из раствора не выделится достаточное число кристаллов с развитой поверхностью, обеспечивающей в соответствии с уравнением (6. III) такую скорость снижения концентрации парафина, при которой дальнейшее новообразование зародышей сможет, наконец, прекратиться. Следовательно, при высокой скорости охлаждения из раствора выделится большое число мелких кристаллов. [c.111]


    Известны непрерывно действующие кристаллизаторы циркуляционного типа двух видов — с циркулирующим раствором и с циркулирующей суспензией. В первых аппаратах в одной части аппарата (холодильнике) раствор пересыщается, а в другой происходит собственно кристаллизация. С помощью насоса суспензия непрерывно циркулирует в замкнутом контуре холодильник — кристаллизатор при этом в кристаллизаторе создается восходящий поток, который поддерживает кристаллы во взвешенном состоянии. Раствор с наибольшим пересыщением соприкасается вначале с кристаллами, находящимися в нижней части взвешенного слоя, поэтому именно в этой части аппарата происходит наибольший рост кристаллов. Таким образом осуществляется распределение кристаллов по величине на разной высоте аппарата. Раствор, выходящий с верха аппарата, практически свободен от кристаллов и поступает в холодильник. Крупные кристаллы, скорость осаждения которых больше скорости циркуляции смеси, оседают на дно и непрерывно выводятся из аппарата. Величину кристаллов регулируют, изменяя скорость циркуляции смеси и скорость отвода тепла в холодильнике. Эти кристаллизаторы пригодны для веществ, кристаллы которых оседают в растворе со скоростью более 20 мм/сек (при меньших скоростях оседания трудно избежать циркуляции кристаллов с маточным раствором). В аппаратах второго типа используется принцип совместной циркуляции. В этом случае растущие кристаллы попадают в зону, где создается пересыщение. [c.174]

    Горячий водный раствор вещества X непрерывно поступает в реактор смешения, снабженный холодильником. Интенсивность перемешивания достаточна, для того чтобы получающиеся в результате кристаллы были невелики и концентрация их была одинаковой во всем объеме реакционной смеси и на выходе из аппарата. В аппарате поддерживают стационарное пересыщение и постоянную температуру. Кристаллы зарождаются спонтанно, и скорость кристаллообразования зависит только от степени пересыщения и от температуры. Скорость роста кристаллов, которые с некоторым приближением можно рассматривать как сферические, также зависит только от степени пересыщения и температуры. В частности, линейная скорость роста кристаллов в направлении, перпендикулярном к их поверхности, не зависит от размера кристаллов. [c.132]

    Опишем процесс массовой кристаллизации из растворов и газовой фазы с учетом контактного вторичного зародышеобразования. Контактное зародышеобразование [30, 33, 38—41] осуществляется посредством маточных кристаллов, если они сталкиваются с другой поверхностью, которой может быть поверхность других кристаллов или стенок кристаллизатора и мешалки. Контактное зародышеобразование вызывает у исследователей значительный интерес, так как вклад его в образование кристаллов наибольший среди всех других видов зародышеобразования [35, 33, 39]. В опубликованных исследованиях для этого типа зародышеобразования контакт достигался или скольжением кристалла вдоль наклонной стеклянной поверхности, погруженной в пересыщенный раствор того же самого вещества [30], или столкновением с мешалкой, или же контрольным ударным контактом между кристаллической затравкой и прутком, сделанными из различных материалов [33, 40]. Существует непосредственная корреляция между числом образовавшихся зародышей и энергией удара при постоянной площади соприкосновения. Авторы работ [33, 42] отмечают сильную зависимость скорости контактного зародышеобразования от пересыщения и предлагают объяснение этого механизма новые центры образуются в жидкой фазе около кристалла или происходят из затравочного кристалла в результате истирания при соударении, при котором от поверхности кристалла откалываются маленькие кусочки, но выживают и получают право на дальнейший рост только те, размер которых больше критического для данного пересыщения. Изучению влияния на контактное зародышеобразование размеров затравочных кристаллов и интенсивности перемешивания посвящены работы [40, 43]. [c.47]

    В качестве второй системы рассматривались раствор и кристаллы щавелевой кислоты. Были проведены эксперименты в пределах температур 303—323 К, концентраций 13—21%, при различных массах кристаллов (0,2-7 мг) по растворению кристаллов щавелевой кислоты в трубе ячейки. Система уравнений, описывающая движение, растворение кристалла совместно с явлениями тепло- п массообмена, аналогична предыдущей. В [72] исследовалась данная система, в качестве движущей силы было принято пересыщение ii—с, (растворение идет в диффузионной области), была найдена зависимость Sh = /1 Re" для определения м- В настоящей работе в качестве движущей силы было взято соотнощение (1.238). Неизвестным параметром являлся коэффициент массоотдачи. В результате расчета системы для кристаллов различных размеров при различных условиях с учетом (1.238) была подтверждена зависимость (8Ь = Л Re ) ошибка в определении скорости растворения кристаллов по найденному соотношению снизилась на 7% по сравнению с ошибкой, определенной в [72]. [c.80]


    Когда сопротивление подводу кристаллизующегося вещества из раствора к поверхности растущей грани велико, а собственно кристаллизация происходит быстро, то пересыщение раствора у поверхности может быть близким к нулю (ДСа=0) [27]. В этом слу чае движущая разность концентраций диффузионного переноса равна пересыщению основной массы раствора, а скорость линейного роста кристалла сферической формы находится следующим образом  [c.175]

    Анализ промежуточной кинетики представляет известные трудности, так как в этом случае пересыщение у поверхности кристалла устанавливается из соотношения между сопротивлениями внешнего диффузионного переноса и процесса собственно кристаллизации подведенного к поверхности вещества. В статистической теории образования двумерных кристаллов выводится следующая зависимость скорости роста от пересыщения в кинетической области процессов  [c.176]

    Рассмотрим модель ЦБК с классифицирующим устройством [55—58]. Принималось, что скорость роста кристаллов и скорость зародышеобразования являются функциями только пересыщения. Принимался идеальный режим работы осветлителя и классификатора кристаллы с характеристическим размером а<а, выводятся из аппарата с маточным раствором, а через кристаллизатор на выгрузку проходят только кристаллы с размером а>а поток кристаллов G, проходящих через осветлитель и классификатор, прямо пропорционален общему объему твердой фазы в кристаллизаторе 0 = каг, k — величина, обратная среднему времени пребывания твердой фазы в кристаллизаторе). Уравнение баланса числа частиц записывалось в виде [c.206]

    Здесь — объем кристалла (если кристалл—куб, то о=1) Е — численная скорость подачи кристаллов (число/с). В уравнении (2.264) членами 0Ас,, будем пренебрегать вследствие их малости. Тогда из уравнения (2.264) можно для пересыщения записать [c.225]

    Модель с учетом скорости осаждения одиночного кристалла и остаточного пересыщения в слое [77—79]. Основные допущения 1) температура во всем слое остается неизменной 2) не происходит дробления или агломерации кристаллов 3) пересыщенный раствор, поступающий в нижнюю часть аппарата, свободен от взвешенных частиц 4) все кристаллы однородны 5) потери мелочи (мелких частиц, увлекаемых циркулирующим раствором) со сливом и пульпой незначительны. [c.228]

    Здесь т]н — максимальная скорость роста, отвечающая начальному пересыщению Асе. [c.231]

    Представленный на рис. 2.21 десублиматор работает в режиме фонтанирования. Для охлаждения слоя используется змеевик 2. Через трубу о в десублиматор вводится исходная ПГС вместе с твердыми частицами. Скорость подачи ПГС регулируют таким образом, чтобы твердые частицы в зоне ядра поднимались чуть выше змеевика 2. Поднимающиеся частицы, достигнув некоторой высоты, перемещаются в кольцевую зону между ядром и стенкой аппарата. По мере роста частиц слоя (так как они обтекаются охлажденным газом и газ в зоне змеевика пересыщен) они под действием сил тяжести опускаются, одна их часть выводится из аппарата через разгрузочное устройство 4, другая часть подается шнеком на рецикл. Из существующей практики известно, что режим работы аппарата с фонтанирующим слоем более устойчив, чем режим работы аппарата с псевдоожиженным слоем. Поэтому привели выше лишь математическую модель процесса десублимации в аппарате фонтанирующего слоя. [c.240]

    Следовательно, скорость роста кристалла в зависимости от относительного пересыщения находится по формуле [c.272]

    При малых пересыщениях, следовательно, скорость роста описывается параболическим законом. Если пересыщение велико (А° >А), то [c.272]

    Таким образом, рассмотренная модель объясняет известный эмпирический факт, что скорость роста кристалла пропорциональна пересыщению в степени g, где показатель степени g принимает значения 1 или 2. [c.272]

    Рассмотрим атомистическую теорию зарождения. Выше был изложен феноменологический подход к образованию зародышей, справедливый в области не очень высоких пересыщений, когда критический зародыш включает в себя многие десятки атомов и может считаться макроскопическим образованием, имеющим форму сферы, куба или параллелепипеда, обладающим поверхностной энергией. Однако при очень больших пересыщениях, когда размер критического зародыша приближается к атомному, использованный подход не обоснован. В этом случае скорость образования зародышей должна определяться из атомистических, а не макроскопических соображений. Наметим общие черты атомистического подхода, имея в виду прежде всего кристаллизацию на подложке, хотя эти черты сохраняются и при анализе образования зародышей в объеме. В изложении будем пользоваться рассмотрением, проведенным в [81]. [c.281]

    Полученное выражение описывает скорость зарождения J., на поверхности как при малых, так и при больших пересыщениях. При больших пересыщениях N, постоянно в широких интервалах Дц, и потому в пределах каждого из этих интервалов In/ должен линейно возрастать с ростом Дц/ Г. При малых пересыщениях мы возвращаемся к классической зависимости, имеющей вид [c.282]

    Регулируя состав исходного расплава, скорость охлажения и продолжительность выдержки при выбранных по диаграмме температурах, можно получать сплавы самых различных структур . Если затем полученную систему закалить, т. е. очень быстро охладить, то все дальнейшие превращения сильно тормозятся и созданная структура сохраняется, хотя и является термодинамически неустойчивой. Это и есть путь получения различных сортов сталей. Следует добавить, что в процессе закалки могут образоваться еще различные, не упомянутые здесь неустойчивые кристаллы. Например, при очень быстром охлаждении аустенита получается мартенсит, который представляет собой феррит, пересыщенный углеродом. Возможность образования подобных систем еще больше усложняет разнообразие в структурах, а следовательно, и в свойствах сталей. [c.417]

    Морфология образующихся частиц в растворе зависпт от целого ряда факторов, но напбо.лее важным является соотношение скоростей их зарождения и роста, которые, в свою очередь, в значительной степени зависят от пересыщения системы. Окончательный размер частиц определяется числом центров кристаллизации и скоростью осаждения вещества. [c.123]

    Подставляя это выражение в уравнение (2.82), можно получить закон изменения скорости создания пересыщения с течением времени, который необходимо соблюдать при периодической кристаллизации для обеспеченпя роста кристаллов в условиях постоянного пересыщения  [c.170]

    Рассмотрим модель кристаллизатора [27]. Изучается процесс кристаллизации в периодическом кристаллизаторе идеального смешения. Полагается, что выделение теплоты кристаллизации не изменяет температуры раствора и пересыщение раствора пропорцио-нально его концентрации Ас с— , t). Скорость роста т] считается зависящей от пересыщения раствора и размера кристалла, а скорость образования зародышей / — от пересыщения. Рост линейного размера кристаллической затравки при изменяющемся пересыщении описывается следующим образом  [c.173]

    Составим алгоритм решения уравнений математической модели. Для данного аппарата мы полагаем известными все параметры исходного раствора йиси Си , а также остаточное давление в аппарате, расход воздуха на перемешивание, размеры аппарата, физико-химические свойства среды, находящейся в кристаллизаторе, зависимости скоростей роста и зародышеобразования от пересыщения и других критериев. [c.184]

    Таким образом, в этих конструкциях пересыщение создается в зоне, свободной от твердой фазы, а снимается в псевдоожиженном слое кристаллов преимущественно на их рост (из-за наличия небольшого пересыщения, при котором скорость образования зародышей невелика). Кристаллы растут, медленно опускаясь вниз корпуса 1, и через выгрузное устройство 7 выводятся из аппарата. В этих конструкциях наблюдается частичная гидравлическая классификация кристаллов по размеру по высоте кристаллорастителя 1. Вот почему в рассматриваемой классификации кристаллизаторов данный аппарат относится к типу SPR. [c.211]

    Построим математическую модель процесса массовой кристаллизации в аппарате типа SPR с принудительной циркуляцией. Полагаем, что основная масса зародыщей возникает в нижней части аппарата. Такое предположение наиболее вероятно, так как в нижней части пересыщение раствора и объемная концентрация твердой фазы больше чем во всех остальных участках аппарата. Тогда для моделирования процесса кристаллизации в данном аппарате (при установившемся режиме работы) рассмотрим трехскоростную однотемпературную среду. Первая фаза—раствор, поднимающийся вверх со скоростью v , вторая фаза — кристаллы, опускающиеся вниз под действием силы тяжести со скоростью v , и третья фаза — кристаллы, увлекаемые потоком жидкости и поднимающиеся вверх со скоростью до тех пор, пока сила гидродинамического давления не уравновесится силой тяжести кристаллов. Функцией распределения кристаллов по размерам будем пренебрегать (так как для аппаратов этого класса коэффициент вариации мал). Полагаем, что в поперечном сечении аппарата кристаллы, принадлежащие /-й фазе (/ = 2, 3), являются сферами одного диаметра зависимость равновесной концентрации от температуры раствора в узком диапазоне температур можно представить в виде линейной ,=aiT- -bi. Система (1.62) при принятых допущениях принимает вид [c.212]

    Следовательно, при малых значениях пересыщения скорость роста подчиняется параболическому закону, так же как и в модели работ [51—58] с поверхностной диффузией (см. уравнение (3.103) . Для относительно больших значений пересыщения (Д >Д) 51п/г(Д7Д) =ехр(А7Д)/2 и уравнение (3.105) после преобразования с учетом (3.107) принимает вид [c.273]


Смотреть страницы где упоминается термин Скорость пересыщения: [c.39]    [c.109]    [c.110]    [c.261]    [c.684]    [c.208]    [c.231]    [c.236]    [c.164]    [c.169]    [c.169]    [c.171]    [c.184]    [c.203]    [c.225]    [c.231]    [c.233]    [c.241]    [c.268]   
Кристаллизация в химической промышленности (1979) -- [ c.76 , c.92 , c.93 , c.101 , c.102 , c.231 , c.232 , c.255 ]




ПОИСК





Смотрите так же термины и статьи:

Низкие пересыщения, скорость роста при

Пересыщение

Пересыщение пара в пограничном скорость образования зародыше

Пересыщение растворов скорости циркуляции

Пересыщение растворов скорость кристаллизации

Пересыщение растворов скорость роста создания

Скорость зависимость от пересыщения

Скорость создания роста пересыщения



© 2025 chem21.info Реклама на сайте