Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Вещества в водных растворах

    В настоящее время известен ряд классификаций экстракционных процессов, в основу которых положены разные признаки экстракционных систем взаимодействие экстрагируемого вещества с органическим растворителем, характер диссоциации вещества в водной и органической фазах, состояние вещества в водном растворе. Экстракционные процессы классифицируют по типу используемого реагента 1) экстракция нейтральными реагентами (растворителями), 2) экстракция реагентами кислотного характера, 3) экстракция реагентами основного характера по типу соединений, переходящих в органическую фазу 1) несольватированные молекулярные соединения, 2) сольватированные нейтральные смешанные комплексы, 3) комплексные кислоты, 4) внешнесферные комплексы. Состав соединения в органической фазе будет зависеть от природы экстрагируемого вещества. [c.427]


    Фенол относится к числу многотоннажных продуктов основного органического синтеза. Мировое производство его составляет около 5 млн. т. Около половины производимого фенола используется при получении фенолоформальдегидных полимеров. Далее, в убывающем порядке, фенол потребляется в производствах дифенилолпропана, капролактама, алкилфенолов, адипиновой кислоты и различных пластификаторов. Фенол используется также для получения хлор- и нитрозамещенных фенолов и салициловой кислоты. На основе этих полупродуктов производятся разнообразные красители, пестициды, фармацевтические препараты (салол, аспирин и др.), присадки к моторным топливам, маслам и пластмассам (алкилфенолы), поверхностноактивные вещества. В водных растворах фенол используется в качестве антисептического средства. На рис. 16.1 представлены некоторые направления использования фенола. [c.351]

    Многие жидкие вещества способны диссоциировать — распадаться на ионы. Способность диссоциировать характерна и для жидких веществ в растворах, и для многих твердых веществ в расплавленном состоянии или растворенных в каком-либо растворителе, в частности в воде. Такие вещества называются электролитами, а процесс распада электролитов на ионы — электролитической диссоциацией. Теория электролитической диссоциации веществ в водных растворах разработана шведским ученым Аррениусом основные закономерности этого процесса, протекающего в водных растворах, рассмотрены в 32 и 33. [c.85]

    О периодичности изменения химической активности простых веществ свидетельствует характер изменения АЯ и АО/ соответствующих однотипных соединений с увеличением порядкового номера элемента. Об этом же свидетельствует рис. 128, на котором показана зависимость значений стандартного электродного потенциала простых веществ в водном растворе от порядкового номера элемента в периодической системе. [c.238]

    Далее изучите, реагируют ли эти газы с известковой водой (раствор гидроксида кальция Са(0Н>2), и, наконец, определите кислотно-основные свойства кислорода и диоксида углерода. Кислотные вещества в водных растворах образуют ионы Н+, основные - ионы ОН", а нейтральные вещества не образуют ни тех, ни других. В гл. I, разд. В.6 вы узнали, что кислотность или основность раствора можно выражать в шкале pH. Универсальный индикатор содержит разнообразные вещества, каждое из которых меняет цвет при определенном значении pH (в разд. Г.13 и Г.14 этой главы мы еще обсудим кислоты и основания). [c.374]


    Для неионизированных полярных алифатических и алициклических органических веществ в водных растворах обратноосмотическое разделение определяется полярными и стерическими эффектами и величина Ам//гб может быть вычислена по соотношению [c.227]

    Собственная ионизация воды вызывает гидролиз веществ в водном растворе, например [c.280]

    Как известно, собственная диссоциация воды является причиной гидролиза веществ в водном растворе. Например  [c.245]

    Огромное количество химических реакций происходит в растворах. Свойства вещества в растворе отличаются от свойств индивидуального вещества и подчиняются особым законам. В этой главе произойдет наше знакомство с законами, которые действуют в водных растворах. Мы рассмотрим теорию электролитической диссоциации, объясняющую механизм процесса растворения и явления, сопровождающие растворение. С точки зрения теории электролитической диссоциации будет обсуждено поведение представителей различных классов неорганических веществ в водных растворах. [c.101]

    Поверхностно-активные вещества можно разделить на три основные группы анионоактивные, катионоактивные и неионогенные, Анионо- и катионоактивные вещества в водных растворах диссоциируют на ионы, неионогенные вещества ионов в водных растворах не образуют. [c.128]

    Анионоактивные вещества в водных растворах диссоциируют на отрицательно заряженные ионы, в состав которых входит углеводородная часть молекулы, и на положительно заряженные ионы металла или водорода. [c.84]

    Зета-потенциал некоторых веществ в водном растворе и в растворе олеата натрия [c.85]

    Катионоактивные вещества в водных растворах распадаются на положительно заряженный радикал и отрицательно заряженный ион кислоты. К ним относятся в основном азотистые основания — нечетвертичные или четвертичные. Нечетвертичные — это соли первичных, вторичных и третичных аминов. Примером таких соединений может служить вещество АНП-2 — хлористая соль первичного амина  [c.85]

    При взаимодействии двух простых веществ А — твердого с хорошей электропроводностью и — жидкого, не проводящего электрический ток, образуется новое вещество В, водный раствор которого имеет голубую окраску. При электролизе этого раствора вновь образуются вещества Л и Б. Определите, что представляют собой исходные вещества. [c.50]

    Неионогенные вещества в водном растворе не образуют ионов. Их растворимость в воде обусловлена функциональными группами, имеющими гидрофильный характер. В отличие от ионогенных ПАВ в гомологических рядах этих соединений может изменяться не только гидрофобная, но и гидрофильная часть молекулы. Этим и объясняется большое разнообразие их свойств. [c.344]

    Составить формулы веществ, в водных растворах которых содержатся следующие ионы а) 1 б) SO в) l  [c.68]

    Как уже отмечалось, повышенная растворимость олеофильных веществ в водных растворах ПАВ обусловлена связыванием этих веществ мицеллами. При этом истинная растворимость в водной (межмицеллярной) фазе практически не изменяется по сравнению с таковой в чистой воде. Для понимания механизма процессов, протекающих в системах раствор ПАВ — солюбилизат (эмульсионная полимеризация, мицеллярный катализ и др.), важно знать, где располагаются и как ориентируются солюбилизированные молекулы в мицеллах. Для выяснения этого вопроса привлекались данные рентгенографии, УФ- и ЯМР-спектроскопии, электронного парамагнитного резонанса и других физических методов исследования. [c.70]

    Из законов термодинамики трудно определить условия, при которых растворы становятся идеальными. Экспериментально установлено, что все достаточно разбавленные растворы, в которых молярные доли всех растворенных веществ достаточно близки к нулю, ведут себя, как идеальные. К такому же выводу приводит и статистическая механика. Концентрация, при которой в данном растворе начинают обнаруживаться заметные отклонения от идеальности, сильно зависит от природы образующих его веществ. Так, для растворов неэлектролитов соотношение (XII.5) соблюдается в пределах 10 молярной доли растворенного вещества. В водных растворах сильных электролитов отклонения от идеального поведения имеют место даже при очень малых концентрациях электролита порядка приблизительно 10 молярной доли растворенного вещества, что, очевидно, связано с дальнодействием 20 307 [c.307]

    В настоящее время известен ряд классификаций экстракционных процессов, в основу которых положены разные признаки экстракционных систем взаимодействие экстрагируемого вещества с органическим растворителем, характер диссоциации вещества в водной и органической фазах, состояние вещества в водном растворе. Экстракционные процессы классифицируют по типу используемого реагента  [c.427]


    В табл. 2.2 приведены энтальпии образования растворенных веществ в водных растворах при 25 °С. [c.48]

    Решение. Различия в температурах замерзания можно объяс нить тем, что вещество в водном растворе диссоциирует, а в бензольном яе диссоциирует. Используя уравнения (XIII.8) и (XII1.9), можно вычислить коэффициент Вант-Гоффа 7. Имея числовое значение i, иожнс сделать [согласно уравнению (XIII. 3)J предположение о числе частиц V, на которые распадается молекула растворенного вещества, и о степени диссоциации а. Согласно сделанным предположениями ДГ =1,28 = 5,16 ДГ = 1,395 = ( 1.86т  [c.188]

    Рассмотрим два основных явления, связанных с образованием границы раздела фаз. Первое состоит в том, что вследствие энергетически неравноценного состояния частиц на поверхности и в объеме раствора их равновесная концентрация изменяется по мере приближения к границе раздела фаз. Это явление получило название адсорбции. Если концентрация частиц увеличивается по мере приближения к поверхности, то адсорб-ция называется положительной (рис. VII. 1, кривая /). Положительная адсорбция может быть обусловлена выталкиванием частиц из объема на поверхность. Так ведут себя гидрофобные органические вещества в водных растворах, которые нарушают водородные связи между молекулами воды в, объеме раствора. Выигрыш в энергии за счет восстановления этих связей при переходе уП.1. Зависимость [c.163]

    Возможности кислотно-основного титрования слабых электролитов в неводных средах. В неводных растворах можно титровать очень слабые (в воде) кислоты и основания, при титровании которых в водных растворах не удается получить резкого скачка титрования вследствие гидролиза солей слабых кислот или слабых оснований, образующихся в водных растворах. Причиной гидролиза вещества в водном растворе является собственная диссоциация воды, например  [c.424]

    Решение. Различия в температурах замерзания можно объяснить тем, что вещество в водном растворе дисссоциирует, а в бензольном не диссоциирует. Используя уравнения (XIII.8) и (XIII.9), можно вычислить коэффициент Вант-Гоффа i. Зная числовое значение , можно сделать, согласно уравнению (XII. 3), предположение о числе частиц v, на которые распадается молекула растворенного вещества, и о степени диссоциации а. Согласно сделанным предположениям  [c.198]

    Существование некоторых веществ в водных растворах в виде частиц, образующихся при распаде молекул растворяемого вещества, доказывается результатами исследования водных растворов методами измерения давления насыщенного пара над раствором и осмотического давления и методами эбулиоскопии и криоскопии (см. 13 и 14). Экспериментально установлено, что осмотическое давление при 0°С 0,01 М водных растворов сахарозы, глицерина, этанола и других органических веществ (растворы которых не проводят электрический ток) составляет 0,23-105 Па. [c.278]

    Активность любого растворенного вещества в водном растворе может быть определена на основании изменения активности воды. Совершенно ясно, что этот метод непригоден для сравнения активностей вещества в различных растворителях, например в водном и спиртовом растворах. [c.37]

    Решение. 1. Определяем по уравнению (VH,18) молекулярный вес растворенного вещества в водном растворе  [c.172]

    Опыт показывает, что при растворении в данном растворителе какого-нибудь вещества равновесное давление пара растворителя понижается. Количественную связь между понижением давления пара и составом раствора открыл в 1887 г. Ф. Рауль. В отличие от своих предшественников он исследовал не только растворы кислот, щелочей и солей, но также растворы органических соединений, применение которых позволило исключить из рассмотрения усложнение картины, вызываемое диссоциацией солей и кислот. В 1882 г. Рауль определил Тзам около 30 органических веществ в водных растворах. Он показал, что независимо от природы веществ растворение одного моля вещества в 1 кг растворителя (воды) приводит к понижению точки замерзания на одну и ту же величину (1,85°С). Затем Рауль заменил воду бензолом, в котором он растворял целый ряд органических соединений. Оказалось, что все они показывали в бензоле одинаковое молярное понижение Т зам рЗВ-ное 5,2 °С. От измерений точек замерзания Рауль перешел в 1886 г. к определениям давления паров неводных растворов. Это привело его к открытию эмпирического закона, который был впервые опубликован в 1887 г. в работе Об упругости пара эфирных растворов . [c.112]

    Окислением кислотообразующих веществ в водном растворе  [c.46]

    Отношение простых веществ к водным растворам более сильных окислителей, чем ОНз. Присущие элементам тенденции к образованию катионных или анионных производных особенно отчетливо проявляются при окислении простых веществ в водных растворах более сильными окислителями, чем вода или ионы ОН3. Таким более сильнь.м окислительным действием, например, обладает азотная кислота. В отличие от многих других кислот она окисляет чаще всего не за счет иона ОНз, а за счет аниона N0, . Характер продуктов восстановления НЫОз зависит от ее концентрации и активности простого вещества. [c.241]

    Оказалось, что в координатах v— W/AP экспериментальные точки хорошо располагаются на прямой (рис. V-4). Однако при экстраполяции этой прямой до ее пересечения с осью абсцисс обнаружено, что точка пересечения находится не в начале координат, а на расстоянии Vo вправо от оси ординат. Был сделан вывод, что удельное сопротивление осадка становится бесконечно большим и фильтрование прекращается раньше, чем пористость осадка достигает значения, равного нулю, иными словами, что существует недоступная для прохождения жидкости часть объема пор. Было также сделано предположение, что недоступная часть объема пор находится вблизи поверхности твердых частиц и заполнена пленкой жидкости, существование которой обусловлено электрокинети-ческими явлениями. Для подтверждения влияния электрокинетических факторов на процесс фильтрования были проведены дополнительные опыты. Они заключались в разделении на фильтре суспензий вспомогательного вещества в водных растворах хлористого натрия различной концентрации. [c.198]

    Электропроводность растворов обусловлена присутствием в них ионов, образующихся при диссоциации растворенных веществ. В водном растворе под действием молекул воды хлористый водород хорошо диссоциирует на ионы, поэтому такой раствор обладает значительной электропроводностью. Жидкий хлористый водород не электро-проводен, т. е. в нем пра тически не происходит диссоциации молекул. [c.210]

    Отношение простых веществ к водным растворам более сильных окислителей, чемОНз. Присущие элементам тенденции к образованию катионных или анионных производных особенно отчетливо проявляются при окислении простых веществ в водных растворах более сильными окислителями, чем вода или ионы ОН3. Таким более силь- [c.263]

    Молекулы катионо-актнвных поверхностно-активных веществ в водных растворах также диссоциируют на ионы, однако поверхностно-активным будет только катион. К ним относятся органические азотсодержащие основания и их соли. [c.354]

    Рефрактометр типа РЛ. Данный рефрактометр (рис. 3, б) предназначен для определения показателя преломления жидкости и концентрации веществ в водных растворах — продуктах сахарного производства (масс. %). Пределы измерения а) по шкале показателей преломления от 1,300 до 1,540, цена деления 1 пгу, б) по шкале сахарозы от О до 95%, цена деления в интервале от О до 50% —0,2 и в интервале от 50 до 95% —0,1. Рефрактометр состоит из основания /, на котором установлена колонка 2, несущая корпус прибора. К корпусу крепятся верхняя 7 и нижняя 5 камеры Аббе. Нижняя камера 5, в которую заключена измерительная призма, жестко закреплена на корпусе. Верхняя камера 7, в которой находится осветительная призма, соединена шарниром 6 с нижней камерой и может поворачиваться относительно последней. Обе камеры полые и имеют штуцера 8, на которые надеваются резиновые трубки для соединения камер с термостатирующей установкой. Для контроля температуры служит термометр 10 в о праве, который соединен непосредственно с ниж-ней камерой. Нижняя и верхняя камеры имеют окна, которые закрываются съеглной крышкой или в нижней — крышкой, а в верхней — диафрагмой. Для направления овето вого потока в окно имеется отражательное стекло-зеркало 9, которое можно устанавливать под любым углом к оптичес <ой оси рефрактометра и фиксировать в необходимом положении. На переднюю крышку корпуса выведена шкала 11 и рукоятка 13, несущая окуляр 12, в котором нанесены три визирных штриха. Вращая рукоятку вокруг ее оси, совмещают границу светотени с в-изирной штриховой линией. На одной оси с рукояткой находится головка диаперсионного компенсатора 4, соединенного с оправой призмы Амичи, при помощи которой устраняется спектральная окраска границы светотени. Светотень во время работы должна быть резкой. [c.15]

    Диссоциация веществ в водных растворах может сопровождаться увеличением общего порядка в системе (А5<0). Это объясняется процессами гидратации образовавшихся ионов СН3СООН+ (л+у) Н20= Н+ ХН2О+СН3СОО- уН О [c.122]

    Галогениды (ЭГ3) и другие соли. Галогениды бора BF, — газ, B I3 и ВВгз — жидкости, BI3 — твердое вещество. В водном растворе галогениды бора подвергаются гидролизу  [c.280]

    В огромном большинстве случаев комплексные соединения образуются при взаимодействии веществ в водных растворах. Получаются они и при других условиях. Так, например, безводный аС12, непоередстиснио соединяясь с аммиаком, переходит в [Са (М 1з) з] [c.40]


Смотреть страницы где упоминается термин Вещества в водных растворах: [c.80]    [c.261]    [c.48]    [c.110]    [c.37]    [c.77]    [c.277]    [c.132]   
Смотреть главы в:

Структурная неорганическая химия -> Вещества в водных растворах




ПОИСК







© 2025 chem21.info Реклама на сайте