Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Основания органические, гидролиз

    Аналогично ведут себя соли пиридина и многих других слабых органических оснований, легко гидролизующиеся в водном растворе. [c.96]

    Растворимость некоторых солей алкалоидов в спиртах также должна учитываться, так как продажный хлороформ может содержать следы спирта. Прочных солей, особенно в водных растворах, могут не образовывать алкалоиды с малой величиной константы диссоциации (у кофеина 4,Ы0 ). Некоторые из таких алкалоидов образуют соли, но последние быстро гидролизуются. При извлечении органическим растворителем из кислого раствора эти алкалоиды-основания (после гидролиза солей) переходят из водного раствора, особенно при недостаточном под-кислении, в органический растворитель. Так ведут себя кофеин и теобромин, всегда обнаруживаемые при химико-токсикологическом анализе в кислой хлороформной или эфирной вытяжке, наркотин, папаверин, колхицин, вератрин, отчасти стрихнин и бруцин. [c.163]


    Предложен метод определения хлорангидрндов в присутствии органических кислот, основанный на гидролизе хлорангидрида кислоты в присутствии пиридина в среде диоксана избыток воды удаляют уксусным ангидридом, а образовавшийся хлоргидрат пиридина титруют раствором хлорной кислоты [320]. [c.137]

    Реакция является каталитической и ускоряется продуктами гидролиза, в частности диалкилфосфитами (табл. 3). В присутствии органических и неорганических оснований скорость гидролиза падает (исключение составляет трифенилфосфит). [c.288]

    Диметилформамид (ДМФ). Из многих способов получения ДМФ наиболее экономичными являются синтез его из метанола, аммиака и углекислого газа, а также из диметиламина и муравьиной кислоты [21]. ДМФ представляет собой прозрачную жидкость, обладающую специфическим запахом. Хорошо смешивается с водой и с другими полярными органическими растворителями. Легко летуч. Как и ДМАА, ДМФ, являясь амидом, склонен к гидролизу, причем скорость гидролиза увеличивается при температурах выше 100 °С. Конечным продуктом гидролиза являются диметиламин и муравьиная кислота. Присутствие солей, кислот и оснований катализирует гидролиз. По характеру токсического воздействия на организм аналогичен ДМАА. ПДК в воздухе рабочих помещений составляет 10 мг/м [6, с. 39 и 266]. Для открытых водоемов ПДК составляет 10 мг/л. Интересно отметить, что в сточных водах, направляемых на биологическую очистку, может содержаться до 1000 мг/л ДМФ [22]. Горюч. Образует с воздухом взрывоопасные смеси. Растворяющая способность ДМФ по отношению к некоторым термостойким полимерам или промежуточным продуктам близка к растворяющей способности ДМАА. ДМФ используется как растворитель поли-л1-фениленизофталамида при получении волокон номекс и фенилон [23, с. 149 24] в особенности, в сочетании с лиофильными солями типа хлорида лития или кальция. [c.33]

    Будучи сложным эфиром, хлор-ИФК в присутствии кислот и оснований медленно гидролизуется с образованием 3-хлоранилина, двуокиси углерода и изопропилового спирта. На этой реакции основаны методы анализа технического продукта, гербицидных препаратов и остатков хлор-ИФК в сельскохозяйственных культурах. В присутствии сильных окислителей хлор-ИФК подвергается деструкции, но сравнительно мягкие органические реагенты и растворители на него действуют мало. При нагревании до температур порядка 250 °С происходит разложение с образованием хлорфенилизоцианата и изопропилового спирта. [c.242]


    Методы нейтрализации или кислотно-основного титрования основаны на использовании реакций нейтрализации кислот, оснований, солей слабых кислот или слабых оснований, сильно гидролизующихся в водных растворах, разнообразных неорганических и органических соединений, проявляющих Б неводных растворах кислые или основные свойства, и др. [c.45]

    Поликарбонаты плавятся при 265 °С и имеют очень высокую ударную прочность. Они устойчивы по отношению к воде и многим органическим соединениям, но основания медленно гидролизуют поликарбонаты. Полимер представляет собой прозрачный пластик. Из него изготавливают ряд полезных изделий, например защитные очки и защитные экраны, детали телефона, части машин и др. [c.178]

    Сульфокислоты разделялись на основании различной их растворимости различные фракции затем десульфировались путем гидролиза водой с образованием органических веществ, которые в свою очередь по различной растворимости разделялись на углеводороды и окисленные соединения (нейтральные смолы и асфальтены). Полученные таким образом углеводороды изучались затем по методу Уотермана с целью общего определения структуры. Результаты рассматриваются более полно ниже, в разделе Сульфированные нефтяные фракции . [c.523]

    Тритильную группу вводят обработкой тритилхлоридом эфира аминокислоты в присутствии органического основания в органической среде. Эту реакцию нельзя проводить в водной среде. Если необходимо получить аминокислоту, то эфир гидролизуют горячей щелочью, поскольку объемистая тритильная группа [c.74]

    Гидролиз рекомендуется проводить в присутствии аммиака или органических оснований. Предложен также метод одновременной этерификации, частичного гидролиза и поликонденсации взаимодействием четыреххлористого титана и водного спирта. [c.498]

    При растворении следует стремиться к тому, чтобы вещество растворилось полностью, независимо от того, полный или неполный анализ требуется провести. Многие неорганические соли и некоторые органические соединения хорошо растворяются в воде, подкисленной минеральными кислотами, чтобы предотвратить гидролиз (соли железа, висмута и др.). Органические соединения хорошо растворяются в органических растворителях - спирте, ацетоне, хлороформе и др. Большинство металлов и сплавов, а также оксидов, карбонатов, сульфидов и др. растворяется в разбавленных или концентрированных кислотах. Выбор кислот осуществляется на основании химических свойств растворяемых веществ. Так, сплавы и оксиды железа лучше растворять в хлороводородной (соляной) кислоте вследствие склонности Ре " к образованию хлоридных комплексов хром и алюминий не растворяются в азотной кислоте из-за образования на поверхности пассивирующей оксидной пленки и т.д. [c.49]

    Превращение в сложные эфиры галогенопроизводных, в которых связь С—X сильно поляризована, например п-фенацилбромида или п-нитробензилхлорида, проводят в слабокислой среде или в присутствии органических оснований, поскольку в щелочной среде под влиянием более сильного нуклеофила (ОН ), чем анион кислоты, идет гидролиз исходного галогенопроизводного. [c.102]

    Если соединение при диссоциации образует катионы, которые сильно поляризуют молекулы гидратной оболочки, и анионы, слабо поляризующие их, то происходит гидролиз по катиону. По катиону гидролизуются лекарственные вещества, представляющие собой гидрохлориды органических оснований. При этом происходит под-кисление среды. Например, [c.126]

    В теоретической и практической химии ЩЭ большое значение имеют их гидроокиси, относящиеся, как известно, к числу оснований, наиболее сильных из существующих и называемых щелочами (растворимые гидроокиси). Причиной отсутствия заметной ассоциации в разбавленных водных растворах ионов M+ aq и ОН -ая с образованием ионных молекул или даже ионных пар типа [Na+ aq] [OH- aq] является, как и в случае растворов солей, слабое поляризующее действие однозарядных катионов ЩЭ. В ряду Ы—Сз оно ослабевает (если раствор разбавлен и анион не проявляет дополнительного эффекта поляризации). Таким образом, самым сильным из неорганических оснований нужно считать СзОН. Соли, отвечающие этому основанию, гидролизуются в минимальной степени. По силе основных свойств с СзОН могут конкурировать только основания, в которых роль однозарядного катиона играют очень большие по размерам органические частицы. Примером могут быть производные четвертичных аммониевых оснований. [c.16]

    Рассмотренная реакция является одной из так называемых конденсаций Кляйзена (присоединение карбаниона к молекуле фира). В приведенном примере карбанион образовался из сложного эфира под действием подходящего основания (чаще всего алкоголята при использовании гидроксида вместо конденсации произошел бы лишь гидролиз эфира). Но карбанион можно получить и из другого органического соединения, содержащего так называемую активную метильную, метиленовую или метиновую группу (разд. 5.5) и способного образовать карбанион под действием подходящего основания. [c.172]


    Неводные растворы имеют ряд преимуществ 1) многие органиче ские вещества, кислоты и основания плохо растворимы в воде, но хо рошо — в органических растворителях (например, бензойная кислота алкалоиды, парафин) 2) неводные органические растворители позво ляют сильно увеличивать диссоциацию молекул органических кислот и оснований 3) в неводных растворах отсутствует гидролиз солей [c.50]

    Полученная по реакции соль сильного основания и слабой кислоты в водном растворе будет подвергаться гидролизу, образуя исходные вещества. Чтобы избежать гидролиза, следует реакцию нейтрализации проводить в среде органических веществ, а щелочь растворять в органическом растворителе. В качестве реактива при определении кислотности обычно применяют спиртовый раствор КОН, так как едкое кали лучше, чем едкий натр, растворяется в этиловом спирте. Для растворения анализируемого нефтепродукта подбираются вещества или смесь веществ, хорошо растворяющих углеводороды и кислые соединения, например этиловый спирт, смесь этилового спирта с бензолом, смесь этилового спирта с этиловым эфиром и др. [c.107]

    Зная коэффициент распределения вещества, легко определить, сколько раз целесообразно проводить экстракцию в данных условиях. При выборе экстрагента для извлечения веществ нз водных растворов следует руководствоваться следующими правилами. Вещества, плохо растворимые в воде, надо извлекать петролен-йым эфиром или бензином, вещества со средней растворимостью— бензолом или диэтиловым эфиром, а дорошо растворимые— полярными растворителями, например этилацетатом. Многие соли слабых органических кислот, например фенолов, или оснований, например пиридина, подвергаются гидролизу в такой степени, что соответствующие соединения хорошо экстрагируются рядом растворителей. Поэтому экстракцию других веществ в присутствии этих солей надо проводить, добавляя избыток сильных неорганических кислот или оснований, подавляющих гидролиз. [c.24]

    Для установления запаса доступного растениям азота в почве приняты методы определения легкогидролизуемого азота по Тюрину и Кононовой и нитрификационной способности по Кравкову. Метод Тюрина и Кононовой основан на определении минеральных форм азота, находяш ихся в почве в данный момент, а также части легкогидролизуемых органических форм азота, которые в ближайшее время могут быть минерализованы. Принцип метода основан на гидролизе органических соединений почвы на холоду 0,5 н. Н23 04. В раствор переходит азот нитратов, аммиака и некоторая часть органического азота, главным образом входяш,его в состав аминокислот и амидов. [c.572]

    Подготовка органов и тканей животных включает два варианта. Первый вариант основан на гидролизе органических веществ соляной кислотой, извле-при помощи перегонки с последующей экстракцией дилора и [c.24]

    Хлор-4,6-бис-(алкиламино)-силж-триазины устойчивы при хранении при комнатной температуре и сохраняются практически неограниченное время без изменения. При нагревании с водой, особенно в присутствии органических или неорганических оснований, они гидролизуются до неактивных оксисоединений  [c.674]

    Однако основные свойства у ароматических аминов гораздо менее выражены, чем у жирных. В последних под влиянием алкильных радикалов основность аминогруппы увеличивается, и жирные амины, как уже указано (см. Основания органические), являются более сильными основаниями, чем аммиак. В ароматических же аминах основные свойства аминогруппы, непосредственно связанной с бензольным ядром, под влиянием последнего ослаблены, поэтому ароматические амины представляют собой более слабые основания, чем аммиак. Водный раствор анилина gHgNHg не показывает щелочной реакции на лакмус. Его соли с соляной или серной кислотой сильно гидролизуются, растворы этих солей в воде имеют кислую реакцию и окрашивают лакмус [c.420]

    Азотистые соединения включают амиды, анилиды, амины, алкалоиды, протеины, аминокислоты (рассмютрены вместе с кислотами), карбаматы или уретаны (рассмотрены со сложными эфирами), лактамы, циангидрины, нитрилы, нитро-, нитрозо- и азосоединения, азолы, оксимы, гидразины, гидроксамовые кислоты, аминоспирты, изоцианаты, пурины или диуреиды, амидины и производные циановой кислоты. Число методов, применимых для определения воды в органических азотистых соединениях, весьма ограниченно. Иногда применимы химические методы, основанные на гидролизе хлорангидридов или ангидридов кислот. Однако они непригодны для перечисленных веществ (особенно для аминов и амидов), которые вступают в реакцию аци-лирования или в присутствии которых ацидиметрическое определение конечной точки затруднено. (Для всех аминов, за исключением низших, может быть применен метод Смита и Брайанта [26] с хлористым ацетилом, характеризующийся сравнительно мягкими условиями.) Для специального случая с анилином описаны методы, основанные на появлении точки помутнения [45-47]. [c.127]

    Способы, основанные па гидролизе или дегалогенировапии Ществ в водных растворах или в органических растворителях, пользованием химических реакций. [c.349]

    Применение некоторых катализаторов значительно ускоряет процесс сернокислотной гидратации. Для этой цели используются соли железа, кобальта, никеля, меди, платины, серебра [41, 42], а также соединения висмута [43, 44]. Сульфат серебра [45, 46] и соли меди [47—49] сильно ускоряют гидролиз сложных эфиров серной кпслоты. Рекомендуется применять в качестве катализаторов галогениды бора пли бораты в соединении с сульфатами никеля и других тяжелых металлов [50]. Необходимые для этого реакционные условия определены Поповым [51]. При высоком давлении и высокой температуре каталитическое действие проявляют сульфаты органических оснований, например изопроииламина, анилина, наф-ти.талшна, хинолнна [52], а также сульфаты и галогениды цинка, магния, бериллия [53] и алюминия [54]. Соли алюминия обладают каталитическим действием при высоком давлении и низких температурах в водном растворе. Наконец, следует упомянуть еще кремневую или борвольфрамовую кислоту и их соли [55], однако процессы с их участием протекают прн 200—300 °С под давлением уже, в газообразной фа.зе. [c.60]

    Недавняя работа Сперлинга [96] представляет собой первую попытку разрешения этой трудной задачи. Сульфокислоты разделялись на группы на основании различной их растворимости различные фракции их затем десульфировались методом гидролиза водой с получением исходных органических молекул эти последние на основании различной растворимости в свою очередь подвергались разделению на углеводороды и окисленные соединения (нейтральные смолы и асфальтены). Углеводородные фракции изучались по методу Уотермана с целью общего Определения структуры. [c.537]

    Крахмал. Крахмал является важнейшим резервным углеводом растений. Он образуется из углекислоты, усваиваемой растениями с помощью хлорофилла, и попадает затем в различные части растения, где используется в качестве строительного вещества. В периоды сильной ассимиляции он откладывается в корнях, клубнях и семенах (особенно обильно, например, в картофеле и семенах хлебных злаков). В холодной воде крахмал почти совсем не растворим, но горячая вода растворяет его в значительной степени, причем образуется вязкий раствор, не восстанавливающий фелингову жидкость и при охлаждении застывающий в студнеобразную массу (крахмальный клейстер). Природный крахмал всегда содержит немного фосфора, количество которого в разных видах бывает различным (0,02—0,16%). Этот фосфор, по-видимому, имеет значение для энзиматического распада крахмала. Из продуктов гидролиза картофельного крахмала была выделена глюкозо-6-фосфорная кислота. На основании исследований Макэнна различают две фракции крахмала амилозу и а м и л о-пектин (вещество оболочки). Первая растворяется в воде без образования клейстера и окрашивается иодом в чисто-синий цвет. Амило-пектин, наоборот, с горячей водой образует клейстер и от иода приобретает фиолетовую окраску. Отделение амилопектина может быть осуществлено путем извлечения щелочами или посредством электродиализа отделение амилозы достигается осаждением различными органическими веществами — спиртами (например, амиловым), сложными эфирами, кетонами, меркаптанами, парафинами. [c.454]

    Успехи органической химии привели к синтезу многих но-еых органических растворителей с большим диапазоном разнообразных свойств, а с развитием лабораторной техники появилась возможность работать с новыми неорганическими растворителями при повышенных и пониженных температурах и без-Доступа влаги. Все это позволило в некоторых случаях замедлить воду, являющуюся до сих пор универсальным растворителем. Особенно часто воду заменяют другими растворителями при кислотно-основноМ титровании. Причинами служат плохая растворимость некоторых веществ в воде, что особенно характерно для многих органических соединений мешающее влияние гидролиза, например, при титровании кислот в присутствии хлоридов или соответственно ангидридов кислот нивелирующий эффект растворителя, из-за которого невозможно Проводить дифференцированное титрование сильных кислот или оснований в их смеся х высокая полярность воды, что-исключает возможность диффренцированного титрования карбоновых кислот в их смесях. Применению неводных растворителей способствовало также создание чувствительных и надежных инструментальных методов индикации точки эквивалентности. [c.337]

    В отличие от тетрафторида для тетрахлорида реакции присоединения мало характерны. С хлоридами других элементов он, как правило, образует системы эвтектического типа. Установлено образование комплексов лишь с небольшим числом органических лигандов ацетонитрилом, ацетофенолом, ацетилацетоном и другими -дикетонами, а также с азотсодержащими основаниями (как пиридин, фенан-тролин и т. п.). Большинство этих комплексов — твердые, нелетучие, бесцветные вещества, гидролизующиеся водой и влагой воздуха. С о-оксихинолином тетрахлорид реагирует, образуя нерастворимое соединение  [c.166]

    К анионам с основными свойствами относятся S ", HS , N ", СНзСОг , а также анионы многих других органических кислот. Гидролиз соли слабого основания и сильной кислоты, например, хло-...подобные реакции — рида аммония, сопровождается увеличением коп-это реакш и 1пдролиза центрации ионов водорода, т. е. раствор закисляется  [c.296]

    Эти соединения образуются при действии металлов на некоторые соединения в отсутствие гидролизующих факторов, ио реакция протекает очень медленно Восстановление же п водной ити спиртовой среде протекает быстро На этом основании бьша выдвинута гипотеза, что восстановлеине заключается прежде вссго в переносе двух электронов атомов натрия к молекуле органического соединения, которая становится, таким образом, анионом Следующее непосредственно вслед за этим присоединение из среды двух протонов является коневдой стадией реакпии. [c.48]


Смотреть страницы где упоминается термин Основания органические, гидролиз: [c.78]    [c.80]    [c.123]    [c.517]    [c.200]    [c.164]    [c.172]    [c.255]    [c.200]    [c.267]    [c.337]    [c.130]    [c.36]    [c.213]   
Аналитическая химия висмута (1953) -- [ c.0 ]




ПОИСК





Смотрите так же термины и статьи:

Гидролиз основания

Органические основания



© 2025 chem21.info Реклама на сайте