Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Альфа область

    В тарельчатых сепараторах можно разделять нефть, воду и твёрдые примеси, в гидроциклонах — воду и нефть основное предназначение декантера — отделение от жидкости больших количеств сравнительно крупных твёрдых частиц. Это взаимно дополняющие устройства, хотя области их применения частично перекрываются. Особенно это относится к тарельчатым сепараторам и гидроциклонам, в которых используются большие центробежные силы (максимальная действующая сила соответственно -5000 и -1000 при длине пути осаждения капель -0,5 и >10 мм), способные отделять самые мелкие капли. Относительная эффективность отделения капель различных размеров в гидроциклонах и тарельчатых сепараторах фирмы Альфа-Лаваль представлены на рис. 2.18, из которого видно, что 100%-я эффективность отделения нефтяных капель достигается при их размерах свыше 30 мкм в гидроциклоне и свыше 5 мкм в тарельчатом сепараторе. При уменьшении размеров капель эффективность сепарации уменьшается так, она составит 50% при размере капель > 5 мкм для гидроциклона и > 1 мкм для сепаратора. [c.244]


    Чрезвычайно редко встречаются такие ядра-мишени, которые дают один специфический тип ядерной реакции. Наоборот, данное ядро в результате бомбардировки альфа-частицами подвержено нескольким различным типам ядерных реакций, например возможны (а, п)- и (а, р)-реакции и большое число других, менее вероятных реакций. Кроме того, разнообразие возможных реакций увеличивается при использовании разных бомбардирующих частиц (нейтронов, протонов, дейтронов, фотонов и даже заряженных атомов тяжелых элементов). Для каждого из этих процессов атомное ядро будет иметь специфическое поперечное сечение. В качестве примера рассмотрим облучение теллура фотонами, имеющими энергию до 70 Мэе. Такое облучение приведет в основном к у, п)-и (V. р)-реакциям, причем преобладающей будет (у, /г)-реакция. Однако можно наблюдать довольно большое число менее обычных реакций. Они могут охватывать диапазон от обычных реакций, таких, как (7, 2п), до таких редко встречающихся реакций, как (7,ЗрЗ/г)-реакция. Общее поперечное сечение превращения будет определяться первыми двумя типами реакций. Однако другие реакции также будут вносить свои вклады. Далее, если использовать другую область значений энергий фотона, то окажется, что соотношение поперечных сеченийУразличных реакций будет изменяться. Если энергия фотона уменьшится, то можно ожидать, что (у, /г)-реакция будет вносить еще больший вклад в поперечное сечение, а если энергия фотона увеличится, то увеличится вклад других реакций. В общем случае следует ожидать, что уменьшение энергии падающей частицы будет благоприятствовать испусканию незаряженной частицы. Это, по-видимому, связано с повышением потенциального барьера для излучаемой частицы при увеличении ее заряда. В общем случае, если падающая частица обладает более низкой энергией, происходит испускание нейтрона или протона. Эти тенденции хорошо иллюстрируются рис. 11-14, на котором приведена зависимость поперечного сечения индуцированных альфа-частицами реакций для N1 от энepгии . Из рис. 11-14 видно, что поперечное сечение реакции зависит не только от ядоз-мишани и типа реакции, но также и от энергии бомбардирующей частицы. [c.416]

    Толш,ина золотой фольги, служившей мишенью, соответствовала двум тысячам атомов, и тем не менее большинство альфа-частиц беспрепятственно проходят через нее, следовательно, можно было предположить, что атом не является сплошным. В то же время некоторые альфа-частицы, сталкиваясь с фольгой, резко отклоняются, следовательно где-то в атоме должна быть положительно заряженная область, в которой сосредоточена практически вся масса атома.  [c.155]


    Ламельные аппараты могут применяться для тепловой обработки тех же сред, для которых предназначены обычные кожухотрубчатые аппараты с круглыми трубами. Однако ламельные аппараты более компактны, теплообмен в них осуществляется в тонком слое, поэтому ламельные аппараты работают при коэффициентах теплопередачи в 1,5—2 раза более высоких, чем аппараты с круглыми трубами. По данным фирмы Альфа-Лаваль , ламельные теплообменники могут работать при давлении до 3,5 МПа, температуре до 600°С и производительности До 200 м /ч. Максимальная поверхность теплообмена у ламельных аппаратов достигает 800 м , а коэффициент теплопередачи—3000 Вт(м -К). Область применения ламельных аппаратов достаточно широка, особенно выгодно их применять при высоких давлениях и температурах, когда разборные пластинчатые аппараты не могут быть использованы из-за отсутствия надежных уплотнений. [c.16]

    Желтый цвет придают сульфид железа, образующийся при введении восстановителей, напр, угля (0,5— 1%), или соединения церия и титана (5—7%). Синие, сине-зеленые и зеленые стекла получают, добавляя окислы кобальта (0,08—0,1%), меди (1,3-3,5%) и хрома (0,05-0,5%). В зависимости от типа и назначения контролируется пропускание, отражение и рассеивающая способность стекол. В линзах контролируют силу света и углы рассеяния. В цветных С. с., кроме того, определяют цветовой тон и чистоту цвета. К С. с. относятся и стекла, поглощающие или пропускающие ультрафиолетовые, инфракрасные и рентгеновские лучи, а также стекла, поглощающие излучения высоких энергий (альфа-частицы, тепловые нейтроны). Поглощения излучений в различных участках электромагн. спектра добиваются введением в состав стекла окислов железа, свинца, бария, кадмия, титана, ванадия, церия. Наиболее полно пропускают ультрафиолетовые лучи фосфатные и кварцевые стекла, не содержащие окислов железа. Черные стекла для люминесцентного анализа, пропускающие ультрафиолетовые и задерживающие видимые лучи, получают окрашиванием стекла окислами никеля и кобальта. Основу стекол с границей пропускания в инфракрасной области спектра составляют окислы германия, алюминия и теллура, а также халькогениды мышьяка, селена и [c.351]

    ЛЕГИРОВАНИЕ (нем. legieren — сплавлять, от лат. ligo — связываю, соединяю) — введение в металлы и сплавы легирующих материалов для получения сплавов заданного хим. состава и структуры с требуемыми физ., хим. и мех. св-вами. Применялось еще в глубокой древности, в России — с 30-х гг. 19 в. Л. осуществляют введением легирующих материалов (в виде металлов и металлоидов в свободном состоянии, в виде различных сплавов, напр, ферросплавов, или в газообразном состоянии) в шихту или в жидкий (при выплавке) сплав. Иногда добавки легирующих материалов вводят в ковш. В закристаллизовавшемся сплаве легирующие материалы распределяются в твердом растворе и др. фазах структуры, изменяя его прочность, вязкость и пластичность, повышая износостойкость, увеличивая глубину прокаливаемости и др. технологические св-ва. Л. существенно влияет па положение критических точек стали. Никель, марганец, медь и азот расширяют по температурной шкале область существования аустенита, причем при известных соотношениях содержания углерода и этих элементов аустенит существует в области т-р от комнатной и ниже до т-ры плавления. Хром, кремний, вольфра.м и др. элементы сужают эту область и при определенных концентрациях углерода и легирующего элемента расширяют область с>тцествоваиия альфа-железа (см. Железо) до т-р плавления. При некоторых концентрациях углерода и легирующего материала сталь даже после медленного охлаждения имеет структуру закалки. Легирующие материалы, не образующие карбидов (напр., никель, кремний и медь), находятся в твердых растворах, карбидообразующие материалы (хром, марганец, молибден, вольфрам и др.) частично растворяются в железе, однако в основном входят в состав карбидной фазы и при больших концентрациях сами образуют карбиды (напр.. [c.681]

    Во внешних областях атома находятся отрицательно заряженные электроны, масса которых слишком мала, чтобы они могли мешать прохождению альфа-частиц. Хотя массы протона и альфа-частицы сравнимы с массой атома, и протон, и альфа-частицы — это голые атомные ядра. Они занимают такое маленькое пространство по сравнению с атомами, что, несмотря на большую массу, их также можно считать субатомными частицами. [c.155]

    Это был важный сигнал из микромира, указывающий на его своеобразие. С точки зрения классической электростатики не было никаких причин сомневаться в возможности делить заряд на сколь угодно малые частицы. Но в природе дело обстоит иначе атомы содержат частицы, несущие элементарные заряды, и первой из них, оказавшейся в сфере внимания физиков, был электрон. Конец XIX в. ознаменовался открытием радиоактивности выдающиеся работы Беккереля, Пьера и Мари Кюри и их сотрудников открыли новую область знания — радиохимию — и дали в руки физиков мощное орудие для разрущения атомов — альфа-частицы. [c.17]


    АЗОТИРОВАНИЕ, нитрирование— насыщение поверхностного слоя металлических изделий азотом. Азотированные слои отличаются повышенными твердостью, износостойкостью, пределом усталости (см. Усталость материалов) и коррозионной стойкостью в различных средах (остальная толща изделий сохраняет свойства исходного материала). А. подвергают термически (см. Закалка, Отпуск в термообработке) и механически (включая шлифование) обработанные новерхности изделий из сплавов железа углеродистых сталей, легированных конструкционных сталей, инструментальных сталей, нержавеющих сталей, жаропрочных сталей, высокопрочных магниевых чугунов, а также из некоторых цветных тугоплавких металлов. Перед А. обработанную поверхность тщательно очищают и обезжиривают. А. поверхностей изделий из с п л а -вов железа проводят, используя герметически закрытые муфельные печи, гл. обр. в среде газообразного аммиака (КНз) при т-ре 500— 700° С (прочностное А.). В этом интервале т-р происходит диссоциация (распад) аммиака по реакции КНз -> ЗН N. Выделяющийся атомарный азот адсорбируется (см. А дсорб-ция) поверхностью металла и диффундирует (см. Диффузия) в кристаллическую решетку металла, образуя различные азотистые фазы. В системе железо — азот при т-ре ниже 591° С последовательно возникают такие фазы а — твердый раствор азота в альфа-желеае (азотистый феррит, содержащий при нормальной т-ре около 0,01% N. См. также Альфа-фаза) у — нитрид (5,7—6.1% N) с узкой областью [c.30]

    Из экспериментов с рассеянием ал ьфа-частиц вырисовывалась такая картина строения атома в центре его находится чрезвычайно плотное, положительно заряженное ядро, которое окружено отрицательными зарядами-электронами. Электроны занимают область атома, радиус которой в 100000 раз превышает радиус ядра. Большинство альфа-частиц, пронизывающих металлическую фольгу, не отклонялись от первоначального направления, потому что они не сталкивались ни с одним ядром. Однако частицы, проходящие вблизи такой большой концентрации заряда, должны были испытывать отклонения, а немногочисленные частицы, которым пришлось столкнуться с крохотной мишенью, отражались в направлении, противоположном тому, из которого они летели. [c.332]

    НОЙ приблизительно в одну тысячу атомов. Поскольку масса альфа-частицы почти в 7500 раз больше массы электрона, столкновения между ними могли вызывать лишь очень незначительные, почти незаметные отклонения альфа-ча-стиц. Следовательно, большая часть массы атома, которая была ответственна за наблюдавшиеся редкие отклонения, должна быть сосредоточена в малой области атома расчеты показывали, что диаметр этой области равен 1/10000 диаметра всего атома (рис. 4.8). [c.63]

    Однако в опытах 1968 г. анализ энергетического спектра альфа-частиц в области энергий ниже 9,4 МэВ был сильно затруднен из-за присутствия альфа-радиоактивного фона — излучения, подобного искомому, но возникающего в результате побочных ядерных реакций. Фоновые альфа-излучатели образовывались под действием ионов неона-22 па микропримесях свинца в материале мишени. Эти побочные реакции в миллионы раз более вероятны, чем главная, а радиоактивные свойства продуктов таких реакций весьма близки к ожидаемым для изотопов [c.487]

    Парафиновые углеводороды. Реакции гидрокрекинга иарафи-новых углеводородов могут проходить без большого отклонения от характера тех реакций, которые проходили бы в отсутствие водорода. Основным отличием является насыщение образующихся олефиновых углеводородов. Как с катализатором, так и без него относительно одинакова скорость крекинга твердых парафинов под давлением 30—100 кПсмР и при температуре свыше 420—450° С. В результате реакции получается ряд парафинов от пептана и выше, но область их распространения лежит не выше порядка исходных углеводородов. Эта реакция носит характер реакции распада в альфа-положении. [c.91]

    Изучение радиационного повреждения, вызванного действием осколков деления, представляет значительный практический интерес. По этой причине процесс заслуживает более внимательного рассмотрения, чем когда он происходит под действием протонов и альфа-частиц [48, 52—54]. Рассеяние энергии осколков деления происходит путем непосредственного взаимодействия с решеткой и с электронами мишени. Последние во всех случаях получают более 95% энергии осколков деления . Ввиду того что отношение масс электрона и осколков деления составляет 2,105, максимальная энергия, которую может получить электрон, достигает 400 эв, а средняя величина равна 100 эв. Что касается столкновений, то Озеров рассчитал, что в уране осколки деления рассеивают 5% своей энергии на смещения в результате столкновения. В своих расчетах он учитывал различные области энергий осколков деления. [c.201]

    Тарельчатые сепараторы нашли широкое применение в различных областях. Что касается предприятий нефтегазового профиля, то на нефтяных и газовых месторождениях, нефтеперерабатывающих заводах сепараторы Альфа Лаваль (Alfa Laval) применяют для переработки нефтешлама, а на морских платформах, например, в Северном море — для очистки пластовой и дренажной вод. Обладая способностью одновременно отделять от воды углеводороды и тонкодисперсные твёрдые примеси, [c.247]

    В некоторых случаях необходимо определять содержание ферритной фазы не только в поверхностных слоях металла шва (альфа-фазометр и ферритометр позволяют осуществлять ее измерение в слое толщиной до 1—2 мм), но и в толще металла на глубине 10—12 мм. С этой целью в 1972 г. НИИРШом совместно с НИИхиммашем был создан феррозондовый ферритометр МФ-10Ф [108], серийное производство которого освоил Московский завод Контрольприбор . Большие работы в области ферритометрии были проведены ЦНИИТМАШем [84, 135], в результате которых созданы электромагнитные ферритометры ФВД-2 и ФЦ-2. [c.142]

    Многие усилители взаимодействуют также с внутриклеточными белками, воздействуя на денатурацию альфа-кератина. Исключением является олеиновая тсислота, однако она более эффективна при добавлении полярного сорастворителя пропиленгликоля, который сам взаимодействует с белками. Липидный барьер ослабевает, содержащие белок клетки могут создавать дополнительное диффузионное сопротив-летгае. Таким образом, усилители, действующие и на липидные, и на белковые области, являются более эффективными. Межклеточный транспорт ЛВ может быть повышен в результате растворяющего действия усилителей на белковые спирали. [c.354]

    На базе отечественного сырья разработать технологию получения биологически мягких ПАВ в ассортименте, полностью удовлетворяющем потребно.сти народного хозяйства. В этом направлении перспективными научно-исследовательскими работами можно считать исследования в области синтеза новых видов ПАВ на основе отечественных видов сырья, таких, как легкоплавкие н-парафины, альфа-олефины и спирты, пропилен и бутилен и т. д., при этом, повышая требрвания, предъявляемые к качеству, сырья и, тем более, к качеству готового продукта, добиваясь получения ПАВ высокой эффективности при низкой себестоимости. [c.47]

    В простой углеродистой стали Д.-ф. существует в интервале очень высоких т-р, при снижении т-ры превращается в гамма-фазу (аустенит). Превращение дельта—гамма в чистом железе является аллотропическим, в стали — перитектическим (см. Перитектика). Ферритообразующие элементы (напр., хром, молибден, вольфрам), растворяющиеся в феррите и стабилизирующие его, способствуют расширению области существования Д.-ф. и сближению ее с областью альфа-фазы. При определенной их концентрации эти области могут соединиться в область твердого раствора на основе альфа-железа. В некоторых сталях (особенно высокохромистых) часть Д.-ф. сохраняется при охлаждении до комнатной т-ры, что обусловливается выделением Д.-ф. с повышенной стабильностью в обогащенных при кристаллизации хромом осях дендритов. В межосных участках, обедненных хромом и др. ферритообразующими элементами, при снижении т-ры происходит дельта—гамма- превращение, а в осях дендритов Д.-ф. остается. Области Д.-ф., наиболее пересыщенные хромом, служат центрами зарождения сигма-фазы, охрупчиваю-щей сталь. Д.-ф. наблюдается в нержавеющих сталях и жаропрочных сталях (хромоникелевых), где в процессе длительных выдержек при т-ре 600—800° С также распадается с образованием сигма-фазы. Вследствие небольшой прочности феррита при высокой т-ре Д.-ф. снижает жаропрочность сталей. [c.324]

    Ж.— в виде теллурического земного или метеоритного — встречается в природе редко. Ж. пластичный металл, легко поддается ковке, прокатке, штампованию и волочению. Его кристаллические модификации альфа-, гамма- и дельта-железо (табл. 1). До т-ры 769° С стойко альфа-железо, выше т-ры 769° С (Кюра точка) оно сохраняет кристаллическую структуру, однако теряет ферромагнетизм, переходя в дельта-железо при т-ре 911° С переходит в гамма-железо, а при т-ре 1400° С гамма-железо превращается в дельта-железо. Немагнитную модификацию железа, стойкую в интервале т-р 769—911° С, нередко наз. бета-железом. Однако его структура тождественна высокотемпературной модификации дельта-железа и не может рассматриваться как самостоятельная. Внешняя электронная оболочка атома Ж. имеет 3(г 48 электронов. Наличие незаполненного Зй слоя и его относительные размеры определяют многие физ. и хим. св-ва элемента. Так, взаимодействие нескомпенсированных спинов четырех иа шести электронов соседних атомов на небольших расстояниях, свойственных альфа-железу, создает области спонтанной намагниченности (домены), определяю- [c.438]

    НИКЕЛЕВАЯ ЛАТУНЬ — латунь в которой основным легируюнщм элементом является никель. В СССР выплавляют И. л. марки ЛН65-5 (64—67% Си, 5—6,5% 141, остальное — цинк). И. л. отличается хорошими мех. и технологическими св-вами, высокой коррозионной стойкостью, легко поддается обработке давлением в горячем и холодном состоянии. Плотность Н. л. 8,65 г/с.и , т-ра плавления 960° С, предел прочности на растяжение 30—80 кгс мм , относительное удлинение равно 60%, НВ = 65. Добавка никеля увеличивает растворимость цинка в меди, т. е. расширяет область альфа-латуней. Под влиянием никеля улучшаются [c.57]

    ОТПУСК Б термообработке — обработка закаленных сплавов, заключающаяся в нагреве до температуры шоке критической точки (нижней), выдержке при этой температуре и последующем охлажденин с заданной скоростью. Известен с древних времен. Первая физ. теория О. создана в СССР в конце 30-х — начале 40-х гг. Термин отпуск применяют преим. к сталям. О. цветных сплавов обычно наз. искусственным старением (см. Старение металлов). Прибегают к О. для достижения необходимого комплекса мех. свойств, гл. обр. наилучшего сочетания прочности и пластичности. Кроме того, О. полностью или частично устраняет внутренние напряжения, возникающие при закалке. Чаще всего О.— завершающая операция термической обработки, окончательно формирующая св-ва сплава. О. стали заключается в переходе системы шартен-сит остаточный аустенит в систему феррит Ь цементит , происходящем в результате последовательного образования нек-рых фаз и промежуточных состояний. В связи с этим всю область т-р О. делят на участки — интервалы превращени , отражающие последовательность фазовых и структурных изменений при нагреве закаленной стали. Под первым превращением, происходящим у углеродистых сталей при т-рах 90 — 180° С, понимают первую стадию распада мартенсита —выделение значительного количества углерода из пересыщенного альфа-твердого раствора вследствие двухфазного распада с образованием дисперсных выделений карбидной фазы. Двухфазный характер распада определяется [c.131]

    VI групп — неограниченные твердые растворы) и сравнительно узкие — альфа-твердых растворов. Исключение составляют скандий, цирконий и гафний, с к-рыми Т. образует неограниченные ряды как бета-, так и альфа-твердых растворов, и редкоземельные металлы, растворимость к-рых в бета- и альфа-титане мала. Растворимость непереходных металлов в альфа- и бета-титане изменяется в довольно широких пределах. Она очень мала в системах с цинком и кадмием и велика в системах с алюминием и оловом. Большинство металлов, в т. ч. все переходные, понижают т-ру полиморфного альфа i бета-превращения, стабилизируя бета-твердый раствор (бета-стабилизаторы). Алюминий, галлий, кислород, азот, углерод и некоторые др. элементы, повышая эту т-ру, стабилизируют альфа-твердый раствор (альфа-стабилизаторы). Известны также метастабильные со-, а -и а"-фазы, образующиеся в нроцессе охлаждения сплавов из р-области и существенно влияющие на технологические св-ва титановых сплавов. Со мн. металлами (непереходными и VII—VIII групп) Т. образует промежуточные фазы с [c.567]


Смотреть страницы где упоминается термин Альфа область: [c.342]    [c.487]    [c.138]    [c.222]    [c.260]    [c.352]    [c.354]    [c.359]    [c.439]    [c.473]    [c.643]    [c.664]    [c.680]    [c.764]    [c.768]    [c.131]    [c.132]    [c.133]    [c.218]    [c.230]    [c.269]    [c.275]    [c.403]    [c.403]    [c.438]    [c.580]    [c.627]   
Химия природных соединений фенантренового ряда (1953) -- [ c.318 ]




ПОИСК





Смотрите так же термины и статьи:

Альфа

Альфа-цепи, Вариабельные области



© 2024 chem21.info Реклама на сайте