Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Гистидина эфиров гидролиз

    Что представляет собой группа —в этом уравнении Опыты с диизопропилфторфосфатом указывают на то, что —0 -группа принадлежит ег-195. Однако этому предположению противоречит очень слабая кислотность —СНгОН-группы. Кроме того, согласно другим данным, роль группы —В выполняет имидазольная группа гистидина. Например, известно, что каталитическая активность химотрипсина при гидролизе сложных эфиров меняется с изменением pH. В то время как кон- [c.108]


    I в положение 4 (5). Легко алкилируется и ацили-Н руется по иминному атому Ы, при взаимод. с р-рами сильных щелочей я пероксидами происходит раскрытие цикла катализирует гидролиз трудно омыляемых сложных эфиров и амидов карбоновых к-т. Получ. взаимод. глиоксаля с МНз и СНаО. И.— структурный фрагмент молекул гистамина, гистидина, пуриновых оснований, дибазола и др. [c.217]

    Метиловый эфир гистидина. Н2О Этиловый эфир цистеина. Н2О Продукты гидролиза Сё + или 25° С [661]. См. также [921] [c.668]

    Еще один пример проявления конформационного эффекта — это различная каталитическая активность природного катализатора химотрипсина при гидролизе сложноэфирной связи в молекулах нитрофениловых эфиров. Известно, что химотрипсин в нативной форме гидролизует сложноэфирную связь с достаточно большой скоростью. При денатурации химотрипсина, когда химическая последовательность звеньев сохраняется, но форма молекулы меняется, скорость гидролиза снижается в миллион раз. Это происходит потому, что в нативной конформации а-химотрипсина два из его аминокислотных остатков — гистидин и серии — находятся рядом, что позволяет им образовать каталитический центр, включающий комбинацию ОН-групп и имидазольных колец, обеспечивающую быструю двухстадийную реакцию. При изменении конформации гистидин и серии оказываются удаленными друг от друга, и активность катализатора падает [34, с. 346]. [c.45]

    Известно каталитическое действие имидазола в реакциях гидролиза сложных эфиров, в частности фенилацетатов [5]. Значение константы р для этой реакции равно 1.95. По всей вероятности, имидазольное кольцо гистидина ответственно за каталитические свойства фермента липазы, с помощью которой осуществляется гидролиз липидов и других сложных" эфиров. Однако изучение гидролиза замещенных фенилацетатов в присутствии липазы привело к значению константы р=0.12. На этой основе был сделан вывод [6], что энзиматический гидролиз менее чувствителен к электронной структуре фенилацетата, чем катализ с помощью одного имидазола. Это объясняется способностью фермента стабилизировать заряды, в результате чего распределение электронов в эн-зим-субстратном комплексе оказывается менее чувствительным к влиянию заместителей в фенильном радикале. [c.365]


    Рентгеноструктурные исследования показали, что помимо серина-195 в активный центр входят также остатки гистидина (Н1з-57) и аспарагиновой кислоты (А5р-102). Другой остаток гистидина (Н1з-40) не участвует в катализе. Фермент обладает специфичностью к ароматическим аминокислотам. Эфиры ароматических аминокислот — хорошие субстраты этого фермента, и для большинства кинетических исследований в качестве субстратов использовались такие эфиры. Фермент расщепляет пептиды, освобождая карбоксильную группу ароматических аминокислот. После образования комплекса Михаэлиса единственный реакционноспособный 5ег-195 вначале ацилируется, образуя ацилферментное промежуточное соединение с субстратом. Превращение комплекса Михаэлиса в ацилфермент происходит сначала путем образования тетраэдрического интермедиата (разд. 4.4.1), и наконец происходит гидролиз ацилфермента при атаке молекулой воды, так что ацилированный продукт обычно не накапливается. [c.220]

    Исследованы также каталитические свойства поли-а-аминокислот, полученных тепловой полимеризацией мономеров [88] . Как правило, реакционная способность боковых групп аминокислотных остатков в этих полимерах (например, имидазольной группы гистидина, участвующей в нукл(1ос[)ильном катализе гидролиза п-нитрофениловых эфиров) не превышает реакционную способность свободных аминокислот. [c.109]

    Трипсин и химотрипсин, очевидно, имеют второй активный центр, содержап ий гистидин. Второй участок удален от первого, но на спиральной цепочке они сближены. Установление активной роли гистидина основывалось частично на изменении скорости ферментативной реакции в зависимости от pH, что соответствовало предположению о стратегическом расположении слабоосновного остатка, имеющего характер гистидина. Даже сам имидазол также катализирует гидролиз простейших сложных эфиров (БрюИ С" и Шм Ир 1965—.19i57 Бендер, 1957). 7 о, что фермент в 10 раз эффективнее, чем имидазол, имеет аналогию в модельных опытах по мутаротации глюкозы — реакции, катализируемой кислотами и основаниями. о -Оксипиридин, содержащий кислотный и основной центры (оба относительно слабые), более эффективен как катализатор, чем смесь пиридина и фенола (Свайн, 1952). И в а-окси-пиридине, и в протеолитическнх ферментах бифункциональность повышает каталитическую активность, поскольку протоны могут быть одновременно поданы и отщеплены в сопряженной реакции. Механизм действия, предложенный, Нейратом (1957) для химотрипсина, сводится к следующему. При взаимодействии гидроксильной группы серина с имидазольным кольцом гистидина отщепляется протон и образуется активированный комплекс П, имеющий электрофильный и нуклеофильный центры. [c.714]

    С раств. в воде, сп. и эф. В незамещенном И. вследствие таутомерии положения 4 и 5 равноценны. Обладает аром, св-вами, вступает в р-ции сочетания с со- М лями диазония. Нитруется и сульфируется только в кислой среде в положение 4 (5) галогенирование в щел. среде идет в положение 2, в кислой — в положение 4 (5). Легко алкилируется и ацили-руется по иминному атому N, при взаимод. с р-рами сильных щелочей и пероксидами происходит раскрытие цикла катализирует гидролиз трудно омыляемых сложных эфиров и амидов карбоновых к-т. Получ. вэаимод. глиоксаля с NHa и СНзО. И.— структурный фрагмент молекул гистамина, гистидина, пуриновых оснований, дибазола и др. [c.217]

    S—S и одну SH-rpynny. Активный центр включает осгаткн цистеина и гистидина активаторы — меркаптаны и др. восстановители, ингибиторы — окислители и ионы тял<е. ых металлов. Выделен в кристаллич. виде из сока дынного дерева. Катализирует гидролиз белков, пептидов, амидов, эфиров и тиоэфиров. Прнмен. для обработки коле, мягчения мяса, осветления напитков. [c.422]

    В основе метода динитрофенилирования лежит реакция свободных ЫНг-групп белка или пептида с 2,4-динитрофторбензолом (ДНФБ) в щелочной среде, при которой образуются соответствующие динитрофенильные производные (ДНФ-производные). В реакцию с ДНФБ, кроме свободных а-ЫНг-групп, вступают также е-ННг-группа лизина, 5Н-группа цистеина, ОН-группы оксиаминокислот и имидазольный гетероцикл гистидина. ДНФ-производное белка или пептида подвергают полному кислотному гидролизу. Ы-концевые ДНФ-амино-кислоты экстрагируют из гидролизатов эфиром, отделяя их от свободных аминокислот и ДНФ-производных по другим функциональным группам аминокислот, которые растворимы в воде. Идентификацию [c.145]

    Глутаминовая кислота, например, кристаллизуется прямо из концентрированного гидролизата, насыщенного хлористым водородом, цистин и тирозин отделяют благодаря их плохой растворимости в воде. Селективное отделение ароматических аминокислот удается выполнить с помощью адсорбции на активированном угле. Полученную при гидролизе смесь аминокислот лучше всего разделить хроматографически. Выделению отдельных компонентов предшествует обычно разделение на кислые, основные и нейтральные группы аминокислот, при этом большое значение имеют электрофорез и специфические иоиообменники. Раннее распространенные методы разделения, такие, как фракционная перегонка эфиров (по Фишеру), экстракция моноаминокарбоновых кислот н-бутиловым или амиловым спиртом (по Дакину), осаждение гексоновых оснований лизина, аргинина и гистидина фосфорновольфрамовой кислотой или флавиановой кислотой, теперь имеют только второстепенное значение. [c.39]


    Основываясь на новых возможностях получения 2-Н18-ОН [169] и Вос-Н18-ОН [170], можно синтезировать важные исходные продукты с 2--Н18(То8)-ОН, 2-Н18(Ас1ос)-ОН и 2-Н18(Вос)-ОН. Разумеется, можно исследовать возможность получения еще и других защитных групп уретанового типа, например М -бензилоксикарбонильной и др. Блокированные ацильной группой производные гистидина могут как ацилимидазолиды вызывать нежелательные ацилирования. Кроме того, будучи лабильными к ами-нолизу и гидролизу, они потенциально опасны при последующих стадиях омыления эфиров или их гидразинолиза. [c.128]

    Успешное введение аминокислотного остатка гистидина в синтетические пептиды по-прежнему представляет собой чрезвычайно сложную проблему. И это связано с крайне неудобными для синтеза химическими свойствами имидазольного цикла. Свободный имидазол — это эффективный катализатор гидролиза сложных эфиров и амидов, а также рацемизации. Сами же гистидиновые производные особенно склонны к рацемизации в процессе пептидного синтеза. Если имидазольный цикл оставить незащищенным, то он может подвергаться ацилированию активированными карбоксильными компонентами, причем получающиеся ацильные производные сами по себе достаточно реакционноспособны и могут затем вызывать перенос ацильной группировки в разных участках молекулы. По этой причине Л т-ацильные производные гистидина часто неудобны в качестве синтетических интермедиатов, если на ряде стадий нужно сохранить находящуюся в боковом радикале защитную группу. Для ступенчатого синтеза можно использовать защищенные уретановые производные, например Ма, Л 1т бис-грег-бут-оксикарбонилпроизводное (63), причем обе защитные группы удаляют непосредственно после введения аминокислотного остатка в пептидную цепь. Так, интермедиат (63) успешно используется в твердофазном синтезе [47]. [c.387]

    Карбоксипептидаза — это металлофермент, содержащий один атом цинка на молекулу белка. Карбоксипептидаза катализирует гидролиз С-концевой пептидной связи в белках и олигопептидах и сложных эфиров а-оксикислот. Кинетический изотопный эффект растворителя равен 2 при гидролизе сложноэфирного субстрата О-(гранс-циннамоил)-ь-р-фениллактата и всего лишь 1,33+0,15 при гидролизе пептида Ы-(N-бeнзoилглицил)-L-фенилаланината [11]. По данным рентгеноструктурного анализа карбоксипептидаза представляет собой глобулярный белок, в котором содержится один атом цинка, координированный двумя остатками гистидина. Кроме того, в состав активного центра входят карбоксильная (01и-270), фенольная (Туг-248) и гуанидиновая (Aгg-145) группы. Последняя образует ионную [c.149]

    Как видно из представленных выше относительных скоростей гидролиза этилового эфира о,ь-феиилаланина, действие иоиов меди ие определяется простыми электростатическими эффектами и скорее всего отражает наличие суперкислотного катализа. Однако в случае сложных эфиров гистидина, цистеина и аспарагиновой кислоты скорость катализируемого ионами меди (II) гидролиза лишь в сто раз выше скорости гидролиза нейтральных субстратов. В этих случаях ион металла может образовывать хелатный комплекс, координируясь с двумя донорны-ми центрами, но не затрагивая сложноэфириую связь. Поэтому величину каталитического эффекта можно объяснить в рамках только электростатических представлений. Очевидно, что суперкислотный катализ проявляется только тогда, когда одним из двух донорных центров, с которыми комплексуется ион металла, выступает карбонильный кислород сложноэфирной связи. Следует отметить, что хотя эти реакции не представлены полностью, в ходе всех процессов происходит регенерация ионов двухвалентной меди. [c.226]

    S) Выделение ДФН-аминокислот из продуктов полного гидролиза. Гидролизат разбавляют так, чтобы он стал 1 н. по соляной кислоте. 5 раз экстрагируют свободным от перекисей эфиром [160, 161] и в присутствии гистидина 5 раз этилацетатом экстракты трижды промывают 0,1 н. соляной кислотой. Затем объединяют, с одной стороны, все экстракты (фракция А растворимые в эфире ДНФ-аминокислоты н динитрофенол) и, с другой стороны, водную фазу с промывными водами (фракция Б свободные аминокислоты и растворимые в кислоте динитрофенилпроизводные, такие, как ДНФ-аргинин, ДНФ-цистеиновая кислота, моно-ДНФ-производные цистеина, цистина, гистидина, лизина, орнитина и тирозина если экстракцию проводили только эфиром, то в этой фракции можно обнаружить также часть дп-ДНФ-гистидина). [c.415]

    Метиловый эфир гистидина, Н2О к-Гептан (I) Смесь гексанола-2 и гексанола-3 Продукты стерео-селективного гидролиза Раз Продукты крекинга Дегидр Кетон С12 (I), Н2О, Н2 Комплекс с D- или L-гистидином (а-ами-Ho- -5-имидазолилпропионовой кислотой) в водных растворах, 25° С [1951] ложение Ni-фталоцианин 700—740° С, скорость подачи I — 1,3—2,5 мл/мин [1952] )ирование Ni(H OO)2—Саз(Р04)г—ZnO (Ni—4,5%, Zn— 11,4%) 400° С, скорость подачи спиртов — 1,3 25 ч. Конверсия 17%, выход I — 59,5% [1953] [c.720]

    Метиловый эфир гистидина (или этиловый эфир цистеина, 3-метиловый эфир аспарагиновой кислоты), НзО Л Продукты гидролиза idpoAua Ni + 25 С [2673] [c.151]

    КЕРАТИНЫ — белки группы склеропротеинов. К. составляют основную массу волос, шерсти, перьев, ногтей, рогового слоя эпителия и т. п. К. нерастворимы в воде, разбавленных к-тах и щелочах, этиловом спирте, эфире, ацетоне. По данным рентгеноструктурного анализа, полипептидные цепи К. существуют в двух формах вытянутой ( -форма) и складчатой (а-форма). В К. имеется много дисульфидных связей, обусл()вливающих нерастворимость этих белков, К. растворяются при нагревании с водой при 150—200 , Сульфиды щелочных металлов, тиогликолевая к-та, цианиды восстанавливают дисульфидные связи К. При этом получаются более растворимые вещества, называемые к е р а т е и н а м и. Химич, состав продуктов гидролиза К. шерсти (в процентах, ориентировочно) аланин 4,1 глицин 6,5 валин 4,6 лейцин 11,3 пролин 9,5 фенилаланин 3,6 тирозин 4,6 триптофан 1,8 серии 10 треонин 6,4 цистин/2 11,9 метионин 0,7 аргинин 10,4 гистидин 1,1 лизин 2,7 аспарагиновая к-та 7,2 глутаминовая к-та 14,1 амидный азот 1,2, К- очищают обработкой измельченных роговых тканей органич, растворителями, водой, затем пепсином и трипсином. [c.272]

    Свободные трет-бутиловые эфиры большинства аминокислот представляют собой устойчивые жидкости, перегоняющиеся без разложения. Они не претерпевают самоконденсации [48] даже при хранении при комнатной температуре (о самоконденсации грет-алкиловых эфиров глицина см. [2395]) это является еще одним достоинством грег-бутиловых эфиров в дополнение к их способности легко расщепляться под действием кислот. Они весьма устойчивы к гидразинолизу и аминолизу [48] и значительно труднее омыляются щелочью, чем соответствующие метиловые и этиловые эфиры. Благодаря этим ценным свойствам грег-бутиловых эфиров их введение в химию пептидов значительно расширило возможности синтеза пептидов, содержащих, в частности, остатки аминодикарбоновых кислот. В то же время не следует считать, что р-трег-бутиловые эфиры аспарагиновой кислоты всегда устойчивы к действию гидразина и щелочи [2017а]. и-трет-Бутиловые эфиры аминодикарбоновых кислот являются весьма удобными производными для синтеза соответствующих а-пептидов [1173, 1974, 1975, 2007, 2019, 2598, 2598а], и, наоборот, а-грет-бутиловые эфиры можно с успехом использовать для получения со-пептидов аминодикарбоновых кислот [2274, 2281, 2283]. трег-Бутиловые эфиры настолько устойчивы к действию щелочей, что в их присутствии можно проводить гидролиз нитрильной группы до соответствующего амида [1419]. Синтезы трет-бутиловых эфиров аргинина, N -зaмeщeннoгo аргинина, гистидина и триптофана до настоящего времени не описаны. Этерификация серина и треонина с помощью изобутилена сопровождается алкилированием гидроксильных групп с образованием 0-эфира [228] правда, это не приводит к каким-либо осложнениям, поскольку простые трет-бутиловые эфиры расщепляются с такой же легкостью, как и соответствующие сложные эфиры. Напротив, при синтезе пептидов, содержащих остатки оксиаминокислот, простые трет-бутиловые эфиры иногда целесообразно использовать в качестве 0-защитной группы [230, 457, 1962  [c.95]

    Рассмотрим в качестве первого примера механизм гидролиза сложных эфиров под действием химотрипсина. Отметим для начала, что изучение зависимости скорости гидролиза от pH среды в присутствии химотрипсина показало, что максимум кривой этой зависимости приходится на значение pH около 7. Это значение приблизительна соответствует величине рЛСа имидазольного фрагмента гистидина. Одно это обстоятельство давало основание полагать, что в активации молекулы сложного эфира прини-нимают участие атомы азота имидазольного кольца. Действительно, модельные опыты по катализу аналогичных [c.100]

Рис. 15. Предполагаемый механизм гидролиза сложного эфира химо-трипсином с участием двух функциональных групп фермента имидазольного кольца остатка гистидина в гидроксильной группы остатка серина. 1—3—стадии процесса жир-н 1я линия условно показывает по-липсптидную цепь, на которой закреплены активные участки Армента Рис. 15. Предполагаемый <a href="/info/74793">механизм гидролиза сложного эфира</a> химо-трипсином с участием <a href="/info/1696521">двух</a> <a href="/info/1301407">функциональных групп фермента</a> имидазольного кольца остатка гистидина в <a href="/info/5243">гидроксильной группы</a> остатка серина. 1—3—<a href="/info/9225">стадии процесса</a> жир-н 1я линия условно показывает по-липсптидную цепь, на которой закреплены активные участки Армента

Смотреть страницы где упоминается термин Гистидина эфиров гидролиз: [c.237]    [c.237]    [c.225]    [c.279]    [c.169]    [c.63]    [c.422]    [c.144]    [c.551]    [c.71]    [c.403]    [c.485]    [c.479]    [c.482]    [c.64]    [c.146]    [c.224]    [c.258]    [c.261]    [c.118]    [c.698]    [c.227]    [c.240]    [c.241]    [c.389]   
Реакции координационных соединений переходных металлов (1970) -- [ c.87 ]




ПОИСК





Смотрите так же термины и статьи:

Гистидин



© 2025 chem21.info Реклама на сайте