Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Вязкость натрия

Рис. 9. Зависимость вязкости натрий-кальций-силикатного стекла Рис. 9. <a href="/info/33730">Зависимость вязкости</a> <a href="/info/71398">натрий-кальций</a>-силикатного стекла

    Как показывает опыт, проверка характеристики насоса на натрии не вносит сколько-нибудь существенных уточнений в результаты ранее проведенных испытаний на воде (рис. 7.22). Заслуживает внимания только некоторый рост КПД насоса при работе на натрии, что объясняется меньшей вязкостью натрия. [c.311]

    Для проведения большинства лабораторных МФК-синтезов можно использовать магнитную мешалку. Однако следует иметь в виду, что иногда результаты не воспроизводятся, особенно в тех случаях, когда для реакции используют 50%-ные растворы гидроксида натрия или калия, которые из-за их вязкости перемешиваются слишком медленно. Рекомендуются следующие скорости перемешивания для МФК-реакций в нейтральных условиях в системе вода/органическая фаза более 200 об/мин [27], для реакций в присутствии гидроксида натрия и в системах твердая фаза/жидкость 750—800 об/мин [31, 32]. В некоторых случаях в системах твердая фаза/жидкость приходится использовать высокоэффективные скребковые мешалки. [c.89]

    При помощи уравнений (У,5) и (V, ) исследован процесс фильтрования различных жидкостей (вязкость 0,7-10 —9-10- Н-с м- ) через слои заранее полученных осадков с неодинаковой степенью сжимаемости и размером твердых частиц от 1 до 350 мкм [170]. Для получения осадков применяли суспензии стальных сферических частиц, частиц песка и сульфата натрия, а также частиц ряда органических веществ, в частности антрахинона, антрацена, у-кислоты, фталевой кислоты. Установлена зависимость между переменными величинами е и ЛР  [c.176]

    Исследовано [226] влияние на скорость фильтрования жидкости изменения вязкости ее тонкого слоя, непосредственно соприкасающегося со стенками пор. Опыты проведены с тонкодисперсным песком и глиной, через слои которых фильтровались вода и раствор хлорида натрия. Установлено, что граничная вязкость раствора электролита, деленная на объемную вязкость раствора, изменяется в зависимости от концентрации электролита. При этом в области концентраций до 10% указанное отношение вязкостей уменьшается, а при дальнейшем увеличении концентрации остается постоянным. Это объяснено наличием в тонкодисперсных пористых системах ориентированных граничных фаз. Отмечено, что в грубодисперсных пористых системах влияние граничной вязкости не наблюдается. [c.202]

Рис. 52. Влияние содержания хлористого натрия на вязкость полиакриламида Рис. 52. Влияние <a href="/info/1646526">содержания хлористого натрия</a> на вязкость полиакриламида

    Электролит — хлорид натрия, сульфат аммония или какую-либо другую соль — обычно добавляют для изменения вязкости мицеллярного раствора. [c.187]

    Чем меньше концентрация щелочи, тем интенсивнее протекает гидролиз. Поэтому как при предварительной обработке (мерсеризации), так и при алкилировании применяют концентрированный раствор едкого натра (не ниже 50%). Избыток щелочи необходим и для нейтрализации образующейся при гидролизе соляной кислоты, которая может понижать вязкость эфира целлюлозы и вызывать коррозию аппаратуры. [c.105]

    Исходные данные расход раствора хлорида натрия = 50 м /ч плотность раствора р = 1197 кг/м вязкость раствора ц,ж — 1,89-10 Па-с, поверхностное натяжение а = 7 -10 кг/м температура десорбции 20 С  [c.221]

    Пример 6-3. Вязкость 40%-ного раствора едкого натра при 60°С составляет fi = 5,4 -спз. Определить вязкость раствора в других единицах измерения. [c.127]

    Нафтенаты тяжелых металлов образуются в результате обменного разложения нафтенатов щелочных металлов и окислов соответствующих металлов. Наибольшее промышленное значение имеют нафтенаты кобальта, марганца, свинца, цинка и железа. Для защиты деревянных конструкций, шпал, рыболовных снастей от действия вредителей и микроорганизмов применяют нафтенат меди. В качестве инсектицида в сельском хозяйстве используют нафтенаты щелочных металлов (натрия, калия). Они менее вредны для растений, чем нафтенаты меди, и обладают более направленным действием. Нафтенаты алюминия, кальция и цинка добавляют к пластическим смазкам для повышения их вязкости и предотвращения расслоения смазок под большим давлением. Нафтенаты свинца, цинка [c.261]

    ВО (ТУ 38.1011315—90) — ружейная смазка, состоит из масла цилиндрового II, церезина и гидроксида натрия. Используют для кратковременной защиты металлических поверхностей от коррозии и как рабочую смазку для ненагруженных узлов, кратковременно работающих при температуре выше 5 °С. Применение при более низких температурах затруднено из-за высокой вязкости смазки. [c.383]

    Время отстоя кислого гудрона должно быть как можно меньше (4—8 ч при использовании осадителей). Поэтому температуру очистки выбирают с учетом вязкости среды. Для ускорения осаждения применяют коагулянты 6—9%-ный раствор едкого натра, раствор жидкого стекла, холодную воду. Эти вещества добавляю г после окончания перемешивания масла с кислотой. [c.365]

    Водные растворы биополимера ХЗ хорошо удерживают во взвешенном состоянии барит, сульфид свинца и другие утяжелители, лучше сохраняя при этом показатели низкой вязкости и другие реологические свойства, чем обычно применяемые промывочные жидкости. Кроме того, промывочные жидкости с биополимером ХС сохраняют устойчивость в присутствии таких растворимых солей, как хлористый натрий, хлористый кальций, хлористый цинк, сульфат кальция и др. В промывочные жидкости, содержащие биополимер ХЗ, для регулирования фильтрационных и реологических показателей можно вводить КМЦ, крахмал, ферро-хромлигносульфонаты, бентонит и нефтепродукты. Этот биополимер, по-видимому, является хорошим эмульгатором нефти. Промывочные жидкости с биополимером ХВ термоустойчивы до 150° С. [c.154]

    При обработке гипаном промывочных жидкостей, содержащих большое количество хлористого натрия, загустевания не наблюдается и в большинстве случаев, особенно после прогрева жидкости, вязкость и предельное СНС ее снижаются. Степень снижения вязкости промывочной жидкости, содержащей гипан, в основном зависит от количества твердой фазы. Если содержание твердой фазы больше оптимального, то добавление гипана как в пресные, так в в минерализованные промывочные жидкости вызывает рост вязкости. При оптимальном содержании твердой фазы загустевание наблюдается в основном в пресных промывочных жидкостях в минерализованных, как правило, вязкость снижается. Величина предельного СНС с ростом минерализации промывочных жидкостей, стабилизированных гипаном, стремится к нулю. Гипан весьма чувствителен к солям кальция и других поливалентных металлов, что в значительной мере ограничивает область его применения. Промывочные жидкости, содержащие гидроокись кальция Са(ОН)з, т. е. так называемые известковые растворы, эффективно стабилизируются гипаном в широком диапазоне температур. При этом расход гипана на их стабилизацию, как правило, невелик. [c.163]

    Натрия альгинат и его растворы используются в производстве различных лекарственных форм — суспензий, эмульсий (как загуститель), таблеток и т. д., как склеивающее средство. Клеящие свойства натрия альгината в десятки раз превосходят клеящие свойства гуммиарабика и более чем в 10 раз крахмального клейстера. При использовании натрия альгината необходимо помнить, что вязкость его растворов в большой степени обусловлепа наличием в растворе электролитов. Так, вязкость натрия альгината снижается при невысоком содержании в воде электролитов и, напротив, повышается при значительных количествах электролитов в растворе. [c.30]


Рис. 232. Зависимость вязкости натрие-во-кальциево-силйкатных стекол от их состава при температуре 1200°. Цифры у кривых показывают значение десятичного логарифма вязкости. Рис. 232. <a href="/info/33730">Зависимость вязкости</a> натрие-во-кальциево-силйкатных стекол от их состава при температуре 1200°. Цифры у кривых показывают значение <a href="/info/1438889">десятичного логарифма</a> вязкости.
    В зависимости от содержания хлора вязкость получаемых масел изменяется весьма широко, Когазин II, содержащий 40% хлора, с успехом применяют в кожевенной промышленности. Его получают, пропуская хлор в когазин II при 95—100° в освинцованном реакторе. После прекращения выделения хлористого водорода (реакция завершается, когда продукт реакции имеет плотность 1,075 при 60°) продукт перемешивают с кальцинированной содой и в заключение обрабатывают сульфатом натрия. Стабилизируют хлорид добавкой 0,4% феноксипропеноксида. Такие масла легко эмульгируются и применяются в текстильной промышленности как замасливающее средство. [c.251]

    В другом процессе агентами, удерживающими меркаптиды в водно-ш елочной фазе, являются чистый или технический крезол и другие кислоты, получаемые из угольной или древесной смолы, а также нафтеновые кислоты. Экстрагент, таким образом, может быть однофазным [154, 155] или же двухфазным [156]. Солю-тайзером может также служить изомасляная кислота. В одном из процессов экстрактный раствор состоит из смеси водных растворов едкого кали (6N) и калиевой соли изомасляной кислоты (3N) [157]. Применение едкого кали по сравнению с едким натром предпочтительнее, так как водные растворы первого обладают меньшей вязкостью. [c.247]

    Проведены опыты в трех стеклянных колоннах высотой 30, 60 и 120 см н диаметром 38 мм, заполненных плотным слоем песка пористостью 0,35—0,40, по вытеснению водного раствора хлорида натрия одной концентрации таким же раствором другой концентрации [246]. При этом установлено, что процесс вытеснения протекал различно в завнсимостн от того, использовался ли в качестве вытесняющей жидкости раствор большей концентрации и соответственно большей вязкости или применялся раствор меньшей концентрации и соответственно меньшей вязкости. После того как вязкость менее концентрированного раствора при добавлении необходимого количества сахарозы стала равной вязкости раствора большей концентрации, процесс вытеснения протекал одинаково, независимо от того, какая из жидкостей использовалась в качестве вытесняющей, В данном случае закономерности процесса вытеснения соответствовали закономерностям этого процесса при использовании более концентрированной и более вязкой вытесняющей жидкости. [c.220]

    Растворы технического полиакриламида и других полимеров в воде проявляют свойства полиэлектролитов, поэтому их вязкость зависит от наличия низкомолекулярных электролитов. Соли, имеющиеся в растворителе, в частности хлорное железо, хлористый кальций и хлористый натрий, как правило, заметно снижают вязкость (рис. 51, 52, 53). Указанные соли и их ионы в закачивае.мые растворы попадают из разных источников, например, ионы железа — на стадии приготовления полимерного рас- [c.112]

    Отрицательное влияние некоторых ионов, в частности ионов железа, может быть снято выщелачиванием раствора при добавлении едкого натра. Влияние концентрации NaOH на вязкость и pH 0,05 /о-ного раствора ПАА указано ниже. [c.115]

    Дерягиным с сотрудниками показано, что приувеличении концентрации электролита значение равновесной толщины пленок водного раствора олеата натрия между воздушными пузырьками имеет тенденцию к понижению, вплоть до некоторого предела hg 12,5 нм, что дает возможность заключить о наличии на пузырьках полимолекулярных гидратных слоев. Метод сдувания позволил найти зависимость реологических параметров жидкости в пристенном слое от расстояния, а исследование поведения жидкостей в зазоре между плоскопараллельными кварцевыми или стальными дисками привело к выводу о повышенной эффективной вязкости граничных фаз. [c.10]

    В промышленной практике применяют такие теплоносители, как смесь дифенила и дифенилоксида, известную под названием даутерма, ртуть и др. Температура кипения даутерма при атмосферном давлении равна 257 °С, а при температуре 350 °С абсолютное давление насыщенных паров даутермы составляет приблизительно 0,6 МПа. Однако скрытая теплота его конденсации значительно ниже, чем для водяного пара и составляет 251 кДж/кг при атмосферном давлении. При нафеве до температуры выше 400 °С находит применение смесь азотнокислых и азотистокислых солей натрия и калия. Так, смесь солей, состоящая из NaNOj (40 %), NaN03 (7 %) и KNO3 (53 %) имеет теплоту плавления 81,6 кДж/кг, температуру плавления 142 °С, теплоемкость 1,6 кДж/(кг К) и вязкость при 260 °С, равную 4 мПа-с, а при 538 °С — 1,0 мПа с. В частности, такой теплоноситель применялся на установке каталитического крекинга с неподвижным слоем катализатора. [c.596]

    Считают, чта топливо для газотурбинных установок должно содержать золы — (Не. более 0,05% ванадия — не более 0,001% натрия—не более 0,0005% серы —до 3%. Требования к вязкости и температуре застывания топлива могут изменяться в зависимости от условий применения и системы подготовки (подогрев ва) топлива. Указанным выше требованиям отвечают прямогон-ные мазуты из Малосернистых нефтей. Остаточные продукты вторичных процессов и прямогонные мазуты из сернистых нефтей, как правило, содержат ванадия более 0,001%- [c.334]

    Возвращаясь к эмульсиям, отметим два факта, противоречащих мнению об определяющей роли межфазной вязкости как фактора, влияющего на стабильность. Во-первых, высокая межфазная вязкость редко встречается-(кроме высокомолекулярных веществ). Лоуренс и Блеки (1954) показали, что дифильные молекулы, дающие высокую поверхностную вязкость с детергентами на поверхности воздух — вода, показывают незначительную межфазную вязкость на поверхности масло — вода. [Может быть имеет смысл проверить эту работу с чувствительным межфазным вискозиметром Девиса и Майерса (1960).] Тем не менее, согласно Шульману и Райдилу (1937) и Шуль-ману и Кокбейну (1940), эмульсионные системы, для которых характерны н есткие пленки (например, цетилсульфат натрия и холестерин), способны образовать эмульсии типа В/М. [c.91]

    Так как трудно получить монодисперсные кап. необходимого размера, имеется очень мало исследований электровязкостных эффектов в эмульсиях. Ван дер Ваарден (1954) определил вязкости ряда эмульсий М/В, стабилизированных сульфонатами натрия, в которых величина не превышала 0,205 мкм (табл. 1 МЗ). Максимальная концентрация примененного эмульгатора была необычно большой, так как составляла — 12% общего веса эмульсии. При более высоких концентрациях эмульгатора 11отн существенно отклонялась от теоретических значений, вычисленных по уравнению (IV.206). Увеличение было также намного большим, чем предсказывалось уравнениями (IV.249) и (IV.250). Поэтому сделано заключение, что расхождение не могло быть результатом искажения диффузного двойного слоя вокруг капель. Полагали, что сильно ионизированный эмульгатор, адсорбированный на поверхностп капель, создает электрическое поле высокого напряжения 10 —10 в см и слой молекул воды прочно связан с ним. Толщина слоя воды, как показано кажущимся увеличением Дг была 0,0014—0,0037 мкм, досиггая почти устойчивого значения при более высоких концентрациях эмульгатора. [c.296]

    Удаление электролита увеличивало толщину диффузного двойного слоя, в результате чего в стационарном состоянии внутри агрегатов удерживалось значительно больше непрерывной фазы. Это увеличивало эффективную объемную концентрацию дисперсной фазы, так как при низкпх скоростях сдвига агрегаты перемещались как отдельные единицы. Добавка электролита к диализованному латексу изменяла зависимость, и вязкость уменьшалась при увеличении концентрации электролита до тех пор, пока не достигала минимального значения. Это сопровождалось изменением режима от неньютоновского до ньютоновского. Лаурилсульфат натрия был гораздо менее эффективным, чем хлорид натрия. Например, i,И iQ моль лаурилсульфата натрия на 1 г латекса снижали вязкость при 1 сек от 505 до 425 пз, а та же концентрация хлорида натрия снизила вязкость до 0,367 пз. [c.298]

    Окзип применяется для снижения вязкости кальциевых и гипсовых растворов при высокой температуре. Этот реагент получают обработкой серной кислотой и хромпиком разбавленного раствора ССБ с последующим окислением едким натром, нейтрализацией и высушиванием продукта. Окзил хорошо разжижает кальциевые и гипсовые растворы при содержании хлористого натрия до 15%. В пресных и слабоминерализованных растворах окзил эффективно снижает фильтрацию. /(ля уменьшения его расхода рекомендуется применять одновременно едкий натр, так как при рН<8 вследствие снижения эффективности расход окзила резко возрастает. [c.55]

    Химические реагенты на основе акршовых полимеров, биополимеры предназначены для снижения фильтрации средне- и высокоминерализованных глинистых растворов в широком интервале температур. Так, метас вводится в раствор в концентрации 0,5-1,5%. Он применяется для уменьшения фильтрации при температурах до 180-200°С. Вязкость растворов, обработанных этим реагентом, с увеличением содержания хлористого натрия снижается. Наиболее эффективны реагенты при pH 9-12. В присутствии солей кальция эффективность их резко снижается, поэтому рекомендуется использовать одновременно специальные реагенты, связывающие ионы кальция. [c.56]

    Качество масла из когазипа 1 было песколько хуже индекс вязкости составлял 75—80, устойчивость к окислению этого масла невелика. Обработкой шлама раствором едкого натра и обычной дальнейшей обработкой пз пего извлекали еще дополнительное количество смазочного масла. [c.615]

    Зависимость вязкости концентрированных растворов полимеров от концентрации и молекулярной массы может быть выражена различными соотношениями уравнением Келли - Бики (431), уравнением Трайбера - Рэнетрема (для характеристики вязкости растворов ксантогената целлюлозы в водных растворах едкого натра - вискозы)  [c.199]

    При бурешш СКВ. 31 Тульская (Майкопское УБР) переход на малосиликатную лромывочную жидкость был осуществлен через бурильные трубы без долота, спущенные на глубину 1850 м. Забойная температура на этой глубине равна 83 С. Ранее применяемая промывочная жидкость обрабатывалась УЩР и в момент перехода имела pH более 10. Перед вводом силиката натрия в промывочную жидкость с целью связывания свободной щелочи было решено снизить pH примерно до 7 введением гидролизного лигнина производства Кропоткинского гидролизного завода (pH этого лигнина близка к 3). После ввода 0,4% гидролизного лигнина величина pH промывочной жидкости снизилась до 8,5, а условная вязкость — с 120 до 30 с. Следует отметить, что в открытой части ствола скважины находились высококоллоидальные майкопские глины мощностью около 300 м, переход которых в малосиликатную промывочную жидкость способствовал повышению ее вязкости и предельного СНС. Для снижения этих показателей, наряду с нейтрализованным кальцинированной соды окзилом,применяли гидролизный лигнин, pH которого предварительно повышали вводом кальцинированной соды до 7. Было отмечено, что разжижающее действие гидролизного лигнина в этих условиях проявляется не сразу после его ввода, а через 2—3 цикла циркуляции промывочной жидкости. Всего при бурении этой скважины было израсходовано 13 т гидролизного лигнина в расчете на сухое вещество. [c.152]

    Исследованиями В. Д. Городнова и Т. В. Изумрудовой установлено, что активация сульфатного щелока достигается введением в него солей хромовых кислот при температуре 90—95° С. При этом получаемые препараты обладают более выраженной стабилизирующей способностью и термостойкостью, чем сульфатный щелок. Получение препаратов ХСЩ осуществляется следующим образом. В нагретый сульфатный щелок при перемешивании вводится 2—4% хромата или бнхромата натрия или калия. Реакция продолжается 1,2—2,0 ч и сопровождается загущением смеси. При достижении вязкости смеси, равной 100—120 сПз, она сливается в П0ДД0Н1.Г слоем толщиной 10—15 см. При атмосферных условиях через 6—10 ч препарат затвердевает и уже через 16—20 ч подвержен диспергированию до порошкообразного состояния, не слеживающегося при хранении. Препараты с 2% бихромата калия названы ХСЩ-2, с 3% — ХСЩ-3 и с 4% — ХСЩ-4. Большие добавки бихромата (до 10%) мало улучшают качество полученного реагента, повышая его стоимость. Данные о влиянии полученных препаратов ХСЩ на свойства промывочных жидкостей приведены в табл. 72. [c.160]

    Исследованиями Э. Г. Кистера и Д. Е. Злотника показано, что добавки гипана к неминерализованной промывочной жидкости повышают ее термоустойчивость примерно до 250° С. Однако добавки гипана вызывают значительное загустевание промывочной жидкости. Для предотвращения загустевания при низких температурах па забое скважины наряду со снижением содержания твердой (особенно глинистой) фазы часто необходимо применение реагентов-понизителей вязкости. Весьма эффективны в этих случаях лигниновые препараты — нитролигнин, сунил, игетан. При температуре забоя скважины более 80° С загустевание промывочной жидкости, стабилизированной гипаном, легко устраняется добавлением небольших количеств хроматов или бихроматов натрия или калия. [c.162]

    Термостойкость неминерализованных буровых растворов определяется не только типом применяемых для обработки химических реагентов понизителей водоотдачи или вязкости и составом твердой фазы, но и в ряде случаев.от наличия в системе специальных добавок, которые сами по себе, т. е. без реагентов-понизителей водоотдачи или вязкости, не оказывают сколько-либо заметного влияния на вязкостные и фильтрационные свойства буровых растворов. К таким добавкам в основном относятся хроматы и би-хроматы натрия и калия. (Хромовые соли калия по стоимости значительно выше, а по действию аналогичны натриевым солям.) Применение метода раздельного введения хромовых солей в буровой практике Советского Союза началось в начале 60-х годов по предложению Э. Г. Кистера и быстро получило широкое распространение. Наиболее важные химические свойства хроматов — сильная окислительная способность с восстановлением шестива-лентного хрома до трехвалентного и склонность к интенсивному комплексообразованию. Окислительные свойства хроматов зависят от pH среды, наличия восстановителя и температуры. Особенно, как указывает Э. Г. Кистер, в присутствии сильных восстановителей хроматы могут окисляться в нейтральной и даже слабощелочной среде. При нагревании восстановление хроматов усиливается и проявляется даже при высоких значениях pH. Заметно ускоряется этот процесс при 80 С, а при 130—150 С достигает максимума (кривая зависимости выполаживается). [c.176]


Смотреть страницы где упоминается термин Вязкость натрия: [c.564]    [c.442]    [c.59]    [c.200]    [c.406]    [c.68]    [c.101]    [c.210]    [c.548]    [c.66]    [c.199]    [c.145]    [c.147]    [c.152]    [c.153]   
Технология азотных удобрений (1956) -- [ c.278 , c.279 ]




ПОИСК





Смотрите так же термины и статьи:

Бикарбонат натрия вязкость растворов

Вязкость нитрата натрия

Вязкость растворов едкого натра

Вязкость растворов калия и натрия

Вязкость растворов нитрата натрия

Вязкость растворов нитратов калия и натрия

Едкий натр Каустическая сода вязкость растворов

Едкий натр влияние концентрации на вязкость вискозы

Казеинат натрия, вязкость раствора

Натр едкий также Каустическая вязкость растворов

Натрий вязкость растворов

Натрий сернокислый относительная вязкость, предельный

Натрий, гидрат окиси, относительное парциальное молярное теплосодержани вязкость

Относительная вязкость растворов хлористого натрия

Плотность и вязкость растворов, содержащих хлорид натрия

Полимер додецилсульфат натрия вязкость

Серная кислота вязкость из сульфата натрия

Хлорид натрия Поваренная соль вязкость растворов



© 2025 chem21.info Реклама на сайте