Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Лаурилсульфат натрия

    Лаурилсульфат натрия Олеат калия Олеат натрия [c.141]

    Лаурилсульфат натрия. Паста бе.того цвета, растворяетсп. легко при температуре выше 20, ее 2-процентный раствор в дистиллированной воде имеет pH от 7,5 до 8,5. Паста содержит не менее 22% алкилсульфата и не более 2,5% свободных спиртов. Содержание сульфата натрия не превышает 3,5% и хлористого натрия—1%. Для приготовления шампуней используется также порошкообразный алкилсульфат с высоким содержанием активного вещества (около 88%). [c.151]


    Лаурилсульфат натрия СНз(СН2)11030з Ыа - синтетическое моющее средство. Как вы думаете, растворимо ли это соединение в воде В масле Объясните ответ на основе правила подобное растворяется в подобном . [c.466]

    Веретенное масло до 15% стеарата или лаурилсульфата натрия. ...... 2 403 169 1946  [c.397]

    Для устранения питтинга к электролиту никелирования добавляют поверхностно-активные вещества типа смачивателей, например лаурилсульфат натрия, добавку НИА-1 и другие. [c.39]

    В качестве характеристики структурно-механических свойств адсорбционных слоев в двусторонних пленках принимают поверхностную вязкость, которая аналогична обычной вязкости для монослоев. Поверхностная вязкость выражается в H м в отличие от обычной для объемных систем, имеющей размерность Па -с. Для адсорбционных слоев поверхностное напряжение сдвига выражается в Н-м . Чувствительный метод изучения структурно-механических характеристик адсорбционных слоев в двусторонних пленках разработал А, А. Трапезников. На примере растворов лаурилсульфата натрия с добавками высших жирных спиртов он с сотр. установил, что устойчивость пен обусловлена высокой поверхностной вязкостью слоев. [c.193]

    Содержатся, г/л. янтарная кислота 30, лаурилсульфат натрия 0,05 0 1. [c.92]

    Для осаждения снлава с содержанием 80 % никеля и 20 % железа используется электролит состава, г/л. сульфат никеля 60. сульфат железа 2, борная кислота 25. сахар 0,8. лаурилсульфат натрия 0,4 с pH =1,84-2,0. [c.183]

    Вещества, добавление которых к растворителю снижает поверхностное натяжение, принято называть поверхностно-активными веществами (рис. 23, кривая /). Если это жидкости, то предельное значение поверхностного натяжения отвечает чистому веществу. Кривым II и III соответствуют вещества, называемые по-верхностно-инактивными. Адсорбция поверхностно-активных веществ положительна. Между поверхностно-активными и поверхностно-инактив-ными веществами существует различие не только по знаку производной do/d , но и по ее абсолютной величине, особенно при малых концентрациях. Например, поверхностное натяжение 5 М раствора хлорида натрия (поверхностно-инактивное вещество) выше, чем у воды, на 10 мН/м, 5 М раствора этилового спирта (ПАВ) — ниже на 35 мН/м, и 0,07 М раствора лаурилсульфата натрия (ПАВ) — ниже на 30 мН/м. [c.57]

    Марка поверхностноактивного вещества, выпускаемого фирмой Дюпон и представляющего собой лаурилсульфат натрия. — Прим. ред. [c.106]

    Кроме блескообразующих и выравнивающих агентов к никелевому электролиту добавляют поверхностно-активные вещества типа смачивателей, например, моющее средство Прогресс (0,01—0,3 мл/л), лаурилсульфат натрия, изопропилнафталин-сульфонат натрия, алкилзамещенные бензолсульфонаты и др. (0,005—0,1 г/л). Эти добавки понижают поверхностное натяжение раствора и облегчают отрыв пузырьков водорода, предотвращая или снижая тем самым образование точечной язвенно-сти в осадке (питтинг). [c.310]


    В результате глубокой окислительной деструкции изотактического [48] или аморфного [49] полипропилена получают воскообразные вещества. Окислительная деструкция проходит быстрее в присутствии ди-грет-бутилперекиси при 160° С [49], причем воскообразные эмульсии можно применять в лакокрасочной промышленности. Полимер с низким молекулярным весом (в пределах 900—30 000) и температурой плавления не ниже 100° С можно получить при термообработке полипропилена при 310—480° С в те- чение 30 мин [50]. Известен процесс окисления поли-а-олефинов, диспергированных в водной фазе, при давлении воздуха до 20 кгс см и температуре 90°С. Водные эмульсии лаурилсульфата натрия и окисленного сополимера пропилена с этиленом пригодны для шлихтования тканей, а также для производства красок и лаков [51]. [c.130]

    Поверхностно-активные вещества (ПАВ) — необходимый компонент электролитов никелирования — влияют на физико-механические свойства, внешний вид никелевых осадков и кинетику растворения анодов. В сульфаминовокислых электролитах никелирования применяют оксиэтилированный лаурилсульфат натрия, лаурилсульфат натрия, смачиватель Прогресс . Эти ПАВ, длительно применяемые в производственной практике, не обеспечивали надежной защиты от появления пористости, питтингов, дендритов. Особенно трудно избежать пористости на начальных этапах формирования слоя, по-видимому, из-за недостаточной смачиваемости поверхности никелевой формы. [c.96]

    Применение лаурилсульфата натрия при использовании бензола в качестве органической фазы сопровождается значительным увеличением молекулярного веса полимера (в 6 раз) при использовании метиленхлорида молекулярный вес поликарбоната увеличивается незначительно. В присутствии небольших количеств (0,05% от водной фазы) олеата натрия при применении бензола в качестве органической фазы молекулярный вес возрастает. Увеличение добавок эмульгатора до 0,4%, вызывает понижение молекулярного веса с 30 000 до 10 000. Такое же понижение молекулярного веса наблюдается при применении метиленхлорида [17]. Скорость гидролиза фосгена при этом в значительной степени зависит от природы эмульгатора и органической фазы. При получении полимера расход фосгена в некоторых случаях сильно возрастает. Так, например, при применении н-гептана в качестве органической фазы в присутствии лаурилсульфата натрия расход фосгена возрастает в 3,5 раза. Кроме того, при применении бензола и метиленхлорида в качестве органической фазы эмульгатор изменяет количество растворенного в органической фазе полимера. [c.21]

    Трехгорлую колбу емкостью 100 мл, снабженную мешалкой и вводом для азота, откачивают и заполняют азотом 3 раза. Приготавливают следующие растворы а) 500 мг олеата натрия (или лаурилсульфата натрия) в 16 мл деаэрированной воды б) 125 мг (0,32 ммоль) Ре(N1 4)2(504)2 и 125 мг пирофосфата натрия в 4 мл деаэрированной воды (для создания буфера). Этот раствор встряхивают в течение 15 мин при 60—70 °С и затем выливают в колбу вместе с раствором, указанным в пункте а . После охлаждения до комнатной температуры в колбу вносят 20 мл (0,2 ммоль) изопрена, перегнанного в атмосфере азота и содержащего 50 мг (0,21 ммоль) перекиси бензоила. Сильное перемешивание способствует образованию стабильной эмульсии, вязкость которой возрастает во времени. После 6-часовой выдержки при комнатной температуре изопрен почти полностью полимеризуется. Полимер высаживается в виде хлопьев из латекса при добавлении эмульсии по каплям к 500 мл метанола, в котором содержится 500 мг М-фенил-Р-нафтиламина, необходимого для стабилизации полиизопрена образование осадка можно усилить добавлением в осадитель нескольких капель соляной кислоты. После фильтрования с отсасыванием и промывки метанолом прочный эластичный образец высушивают в вакуумном сушильном шкафу при 50 °С. Определяют растворимость полученного полимера в различных растворителях, измеряют характеристическую вязкость в растворе толуола при 25 °С, содержание 1,2- и 1,4-звеньев в цепи, а также соотношение цис- и тро яс-структур (см. опыт 3-30). Сопоставьте полученные данные с результатами полимеризации изопрена под действием бутиллития (опыт 3-30). [c.137]

    Стирол очищают от ингибитора (см. опыт 3-01) и перегоняют в токе азота в специальный приемник (см. раздел 2.1.2). Бутадиен конденсируют из баллона в охлаждаемую ловушку, заполненную азотом, и помещают в смесь сухого льда с метанолом. Полимеризацию проводят в специальном сосуде емкостью 500 мл, испытанном на давление 25 атм. Сосуд заполняют азотом, затем в него наливают раствор 5 г олеата натрия (или лаурилсульфата натрия) в 200 мл кипяченой воды, 0,5 г додецилмеркаптана (используемого в качестве регулятора молекулярной массы) и 0,25 г (0,93 ммоля) персульфата калия. Содержимое перемешивают встряхиванием сосуда до полного растворения всех компонентов. Доводят pH раствора до 10—10,5 добавлением разбавленного раствора ЫаОН. В сосуд под азотом заливают 30 г (0,29 моля) стирола и 70 г (1,30 моля) бутадиена и плотно закрывают. Бутадиен переливают в полимеризационный сосуд следующим образом. Сосуд, погруженный в охлаждающую баню со смесью сухого льда с метанолом, ставят на весы (под тягой) и из ловушки быстро наливают бутадиен. Избыток бутадиена испаряют. Закрытый сосуд помещают за экран и нагревают до комнатной температуры. Сосуд заворачивают в ткань и интенсивно встряхивают для получения эмульсии. Полимеризацию проводят при 50 °С. Для этого сосуд ставят на термостатируемую переворачивающую качалку, а если ее нет, то его интенсивно встряхивают примерно через каждый час. Продолжительность реакции 15 ч (обязательно использовать защитный экран). Затем сосуд охлаждают вначале до комнатной температуры, а затем до О °С (в ледяной воде). Сосуд повторно взвешивают для проверки утечки бутадиена. Полученный латекс под тягой медленно выливают при перемешивании в 500 мл этилового спирта, содержащего 2 г Ы-фенил-р-нафтиламина для стабилизации полученного сополимера против окисления. Непрореагировавший бутадиен испаряется сополимер выпадает в виде слабо слипающихся хлопьев. Осадок фильтруют и сушат в вакуумном сушильном шкафу при 50—70 °С в течение 1—2 сут. Состав сополимера можно определить аналитически по содержанию двойных связей либо спектроскопически по содержанию стирола (см. раздел 2.3.9) конфигурацию звеньев бутадиена в цепи сополимера определяют по ИК-спектрам (см. опыт 3-30). Сополимер можно превратить в нерастворимый высокоэластичный продукт вулканизацией (см. опыт 5-10). [c.179]


    Акрилонитрил перегоняют в атмосфере азота в специальный приемник (см, раздел 2.1.2). Бутадиен конденсируют из баллона в охлаждаемую смесью сухого льда с метанолом ловушку, заполненную азотом. По методике, описанной в предыдущем опыте, проводят полимеризацию в смеси, содержащей 10 г (0,19 моля) акрилонитрила, 25 г (0,46 моля) бутадиена, 0,1 г додецилмеркаптана (для регулирования молекулярной массы), 0,25 г (0,93 ммоля) персульфата калия (инициатора) и 50 мл 5%-ного водного раствора олеата натрия (или лаурилсульфата натрия). Через 18 ч полимеризационный сосуд охлаждают до комнатной температуры, а затем до О °С (льдом). Сосуд взвешивают для определения утечки бутадиена во время полимеризации. Латекс выливают в химический стакан, добавляют при перемешивании 0,5 г Ы-фенил-Р-нафтиламина, используемого в качестве антиоксиданта. Затем для осаждения сополимера в стакан при [c.179]

    Смесь сернистого ангидрида и хлора дает приблизительно такие же результаты [49]. В патентной литературе описано приготовление лаурилсульфата натрия и аналогичных соединений гидролизом лаурилового эфира хлорсульфоновой кислоты [50]  [c.14]

    Соли кислых эфиров, полученных из лаурилового, цетилового и олеилового спиртов, равноценны до своему моющему и пено-образующему действию, но отличаются по растворимости [110]. При отмывке шерсти натриевая соль олеилсерной кислоты превосходит по своим качествам лаурилсульфат натрия [111]. Аммониевая и натриевая соли цетилсерной кислоты изменяют поверхно,-стное натяжение воды в такой же степени, как и натриевая соль кислого сульфата рицинолевой кислоты [109]. Имеются данные [112] о поверхностном натяжении на границе раздела парафин нового масла и водных растворов ряда солей додецил-(лаурил-), тетрадецил-, гексадецил- (цетил-) и октадецилсерных кислот при различных температурах. Согласно указаниям Смиса и Джонса [113], присутствие алкилсульфата натрия вызывает значительную погрешность при колориметрическом измерении pH растворов. [c.21]

    Удаление электролита увеличивало толщину диффузного двойного слоя, в результате чего в стационарном состоянии внутри агрегатов удерживалось значительно больше непрерывной фазы. Это увеличивало эффективную объемную концентрацию дисперсной фазы, так как при низкпх скоростях сдвига агрегаты перемещались как отдельные единицы. Добавка электролита к диализованному латексу изменяла зависимость, и вязкость уменьшалась при увеличении концентрации электролита до тех пор, пока не достигала минимального значения. Это сопровождалось изменением режима от неньютоновского до ньютоновского. Лаурилсульфат натрия был гораздо менее эффективным, чем хлорид натрия. Например, i,И iQ моль лаурилсульфата натрия на 1 г латекса снижали вязкость при 1 сек от 505 до 425 пз, а та же концентрация хлорида натрия снизила вязкость до 0,367 пз. [c.298]

    Особенно благоприятны условия для измерения линейного натяжения по периметру ньютоновской пленки из водных растворов лаурилсульфата натрия (NaLS). В этом случае при вспенивании довольно концентрированного раствора (при достаточном содержании электролита и подходящей температуре) возникают очень устойчивые и чрезвычайно тонкие, почти бимолекулярные ньютоновские (вторичные) черные пленки с небольшим, но надежно измеряемым углом контакта с объемной жидкостью порядка 10°. Очень важно и то, что даже при самом тщательном исследовании не обнаруживается гистерезис этого угла, а также и то, что эти системы очень подробно изучены многими авторами, получившими разными методами совпадающие результаты, касающиеся oL, т. е. угла контакта большой пленки с объемной жидкостью. Все это послужило основанием для измерения у именно в этой системе. [c.259]

    Щелочной гидролиз метил-1-нафтоата в 50%-ном водном диоксане зависит как от природы растворителя, так и от электростатических факторов. Если проводить реакцию в присутствии лаурилтриметиламмонийхлорида, то ее скорость несколько увеличивается, но в присутствии лаурилсульфата натрия, напротив, сильно падает. Рассмотрим сначала, какое действие оказывает природа углеводородного радикала. В системе метил-1-нафтоат — углеводород вероятность обнаружить углеводород в непосредственной близости от сложного эфира значительно выше соответствующей мольной доли. Следовательно, микроскопическое окружение сложного эфира в присутствии углеводорода гораздо менее полярно, чем в его отсутствие. Иными словами, диэлектрическая проницаемость микроокружения ниже. Можно ожидать, что в таких условиях гидроксид-ион будет атаковать сложный эфир с меньшей эффективностью. В том случае, если добавленный углеводород несет электрический заряд, то распределение молекул растворителя не изменится, и, следовательно, вновь сложноэфирный субстрат будет окружать среда с пониженной диэлектрической проницаемостью. Электрический заряд молекулы детергента также должен оказывать влияние на характер реакции отрицательный заряд будет отталкивать, а положительный — притягивать гидроксид-ион. Таким образом, в случае солей органических анионов эффект окружения и электростатический эффект действуют в одном направлении, вызывая сильное ингибирование, а в случае солей органических катионов эффект окружения и электростатический эффект действуют в разных направлениях, что приводит к некоторому увеличению скорости реакции, если последний эффект доминирует над первым. [c.339]

    Окисление проводится воздухом в водо-масляпой эмульсии при 100 и тщательном перемешивании. В процессе окисления применяются эмульгаторы типа стеарата или лаурилсульфата натрия в количестве 0,3% вес. [c.515]

    Додециловый эфир серной кислоты, натриевая соль Додецилсульфат натрия Лаурилсульфат натрия СНз (СНа)ц050зКа [c.217]

    При сенсибилизировании трудиосмачиваемых поверхностей в состав раствора вводят поверхностио-активные вещества иапример лаурилсульфат натрия (0 001—2 г/л) по-видимому. способствующие более равномерному распределению продуктов гидролиза соли 5п (И) [c.43]

    MOB, которые обладают высокой прочностью и могут привести к сильному истиранию и повреждению эмали зуба. К абразивным материалам добавляют MgO, полученный прокаливанием Mg Os. Оксид магния придает порошкам легкость и рыхлость. В некоторые сорта порошков вводят пероксид магния Mg02, который обладает отбеливающими свойствами. В небольших количествах в порошки включают поверхностно-активные вещества, например лаурилсульфат натрия i2H250S03Na, а также отдушки — чаще всего ментол или экстракт мяты. В настоящее время существенно сокращено производство зубных порошков, поскольку они стали менее популярными, чем пасты. [c.104]

    Исходные материалы дифенилолпропан — 5,95 г дихлорангидрид изофталевой кислоты — 2,45 г дихлорангидрид терефталевой кислоты — 2,45 г (мольное соотношение 1 0,5 0,5) едкий натр—2 г хлороформ — 75 мл лаурилсульфат натрия—15 мл 10%-иого раствора ацетон — 300 мл. [c.113]

    Исходные материалы фосген—,13 г (0,36 моля) 4,4 -диоксиднфенил-2,2-пропан — 34,25 г (0,3 моля) п-третнчный бутнлфенол — 0,85 г едкий натр—17,5 г (0,88 моля) сульфат натрия — 0,25 г метиленхлорид — 40 мл лаурилсульфат натрия — 1,05 г триэтиламин — 0,05 г лигроин — 82,5 г. [c.121]

    В кслбу помещают дифенол, п-третичный бутилфенол, NaOH и 210 мл воды. Как только все вещества растворятся, добавляют сульфат натрия и метиленхлорид. Смесь перемешивают со скоростью 100 об/мин, вводят лаурилсульфат натрия и триэтиламин, растворенные в небольшом количестве воды смесь охлаждают до 20° С и начинают пропускать фосген. в течение 50 мин. После этого перемешивание продолжают в течение еще 1 ч. В реакционную смесь добавляют лигроин для осаждения полимера, продукт собирают на фильтре и промывают двумя порциями воды (по 50 мл). Поликарбонат нагревают при 90°С в течение [c.121]

    По поводу электростатических эффектов в мицеллах можно сделать следующие обобщения. Катионные мицеллы детергентов ускоряют реакции нейтральных органических молекул с анионными реагентами, но замедляют реакции нейтральных органических молекул с катионными реагентами. С другой стороны, анионные мицеллы детергентов ускоряют реакции нейтральных органических молекул с катионными реагентами, но замедляют реакции нейтральных органических молекул с анионными реагентами. Удивительно, что это правило выполняется для огромного числа реакций. Например, катионный детергент цетилтриметиламмонийбромид (ЦТАБ) ускоряет реакции некоторых красителей с гидроксид-ионом в четыре — пятьдесят раз, а щелочной гидролиз л-нитрофенилгексаноата — почти в пять раз. Однако гидролиз (кислотный) метил-о-бензоата ингибируется ЦТАБ, рис. 12.14. В то же время такие анионные детергенты, как лаурилсульфат натрия (КаЬ5) или олеилсуль-фат натрия (ЫаОЗ), ускоряют кислотный гидролиз метил-о-бензоата (рис. 12.14), причем каталитический эффект достигает восьмидесяти раз [23]. [c.338]

    Влияние структуры субстрата становится ясным при исследовании зависимости скорости реакции от способа взаимодействия субстрата с мицеллами. Например, бромид цетилтриме-тиламмония сильнее разгоняет гидролиз л-нитрофенилгепта-ноата, чем л-нитрофенилацетата, вследствие лучшего связывание первого эфира с мицеллой. По той же причине гидролиз этил-о-валерата и этил-о-пропионата ускоряется в присутствии лаурилсульфата натрия, но скорость гидролиза этил-о-формата от его концентрации не зависит [23]. [c.339]

    Трехгорлую колбу, емкостью 250 мл, снабженную мешалкой, термометром я вводом для азота, откачивают и започняют азотом (операцию повторяют 3 раза). Затем в токе азота в колбу В)Водят 0,122 г (0,45 ммоля) персульфата калия и 0,05 г ЫаНгРО , 1 г олеата или лаурилсульфата натрия и 100 мл прокипяченной в токе азота воды. После растворения в колбу при постоянном перемешивании вводят 50 мл очищенного от ингибитора стирола. Образовавшуюся эмульсию перемешивают с постоянной скоростью в слабом токе азота в течение 6 ч при 60 °С. Затем реакционную смесь охлаждают, пипеткой отбирают 30 мл полистирольного латекса и переносят в химический стакан. Добавлением равного объема концентрированного раствора сульфата алюминия осаждают полимер (если необходимо, смесь кипятят). Вторую пробу (также 30 мл) осаждают добавлением 300 мл метилового спирта. Латекс, оставшийся в колбе, коагулируют добавлением к нему концентрированной соляной кислоты. Полученные образцы полимеров промывают водой и метанолом, отфильтровывают на стеклянном фильтре и высушивают до постоянной массы в вакуумном сушильном шкафу при 50 С. Определяют суммарный выход полимера и характеристическую вязкость (степень полимеризации) одного из образцов. Полученные результаты сопоставляют с данными полимеризации в массе (см. опыты 3-01 и 3-02) и в растворе (опыт 3-13). [c.122]

    В 4 толстостенные ампулы емкостью 30 мл помещают по 0,5 г олеата натрия (лаурилсульфата натрия), 25 мг (0,1 ммоля) персульфата аммония и 10 мг (0,1 ммоля) кислого сернистокислого натрия. Ампулы через специальный переходник (см. раздел 2.1.3) несколько раз откачивают и заполняют азотом затем в каждую из градуированной капельной воронки добавляют по 10 мл дистиллированной воды. При небольшом избыточном давлении азота ампулы отсоединяют, быстро закрывают резиновыми пробками и охлаждают до —70 °С в невос-пламеняющейся охлаждающей смеси сухого льда с хлористым метиленом. Резиновые пробки вынимают и добавляют необходимое количество охлажденного винилхлорида и винилацетата. Избыток винилхлорида испаряют на весах. [c.180]


Смотреть страницы где упоминается термин Лаурилсульфат натрия: [c.273]    [c.625]    [c.650]    [c.129]    [c.408]    [c.287]    [c.347]    [c.25]    [c.309]    [c.93]    [c.161]    [c.43]    [c.78]    [c.116]    [c.117]    [c.338]   
Биоорганическая химия ферментативного катализа (1987) -- [ c.338 , c.339 ]

Справочник биохимии (1991) -- [ c.234 ]

Основы биологической химии (1970) -- [ c.0 ]

Справочник резинщика (1971) -- [ c.375 ]

Капельный анализ органических веществ (1962) -- [ c.741 ]

Технология производства полимеров и пластических масс на их основе (1973) -- [ c.174 ]

Поверхностно-активные вещества (1953) -- [ c.502 , c.504 ]




ПОИСК





Смотрите так же термины и статьи:

Додециламин, титрование лаурилсульфатом натрия

Додецилсульфат-S35 натрия (Лаурилсульфат-S35 натрия)

Лаурилсульфат натрия, титрование

Лаурилсульфат натрия, титрование поверхностно-активными веществами

Лаурилсульфат натрия, эмульгатор

Натрия лаурилсульфат, растворы

Определение лаурилсульфата натрия фотоколориметрическим методом

Поверхностно-активные вещества лаурилсульфат натрия



© 2025 chem21.info Реклама на сайте