Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Кальций сернистый, карбид

    В руднотермических электропечах осуществляют многие восстановительные процессы, в ходе которых загружаемые в печь руды, представляющие собой окислы различных элементов, в присутствии восстановителя (обычно углерода) при высокой температуре восстанавливаются и сплавляются с железом, содержащимся в шихте, давая в виде конечного продукта сплав данного элемента с железом. К ним также относятся получение карбида кальция СаСг при восстановлении кальция из СаО (обожженного известняка) е условиях избытка углерода в шихте получение так называемого роштейна при плавке медно-никелевых сернистых руд получение электрокорунда плавка муллита получение карборунда графитирование прессованных электродов получение карбида серы, карбида бора, титановых шлаков, конденсационного цинка и свинца и некоторые другие. К таким процессам следует также отнести возгонку фосфора, получе- 1ие черного цианида и электроплавку чугуна. В настоящее время разрабатываются в промышленном масштабе процессы получения руднотермическим путем (плавкой в электропечи) силикоалюминия и других продуктов, осуществление которых будет значительно рентабельнее, например, применяющегося ныне для получения алю.чи-ния процесса электролиза. [c.116]


    К этой группе относятся щелочные металлы, карбиды щелочных металлов, карбид кальция, гидриды щелочных и щелочноземельных металлов, негашеная известь, фосфористый кальций, сернистый натрий и другие, т. е. вещества, взаимодействие которых с водой сопровождается значительным экзотермическим эффектом. Образующегося при этом тепла достаточно, чтобы вызвать воспламенение выделяющихся в результате реакции горючих соединений. [c.318]

    Абсорбцию фосфористого водорода серной кислотой осуществляли в динамических условиях. Ацетилен перед подачей в абсорбер предварительно осушали, пропуская через прокаленный хлористый кальций и карбид кальция. Опыты проводили в стеклянном абсорбере с впаянным стеклянным фильтром. В абсорбер заливали 100 мл серной кислоты и пропускали ацетилен со скоростью примерно 23 л/ч. Выходящий из абсорбера ацетилен очищали от сернистых соединений раствором щелочи. В отработанной серной кислоте определяли содержание сульфата фосфония, сумму фосфорных кислот, отдельно ортофосфорную кислоту, а также суммарное содержание фосфора (включая фосфорорганические соединения). Количество фосфора в органических соединениях определяли по разности между суммарным содержанием фосфора и количеством фосфора, входящего в фосфорные кислоты и сульфат фосфония. [c.81]

    Гидратация ацетилена в ацетальдегид (ацетилен, полученный из карбида кальция, не содержащий сернистых и фосфористых соединений) можно употреблять большой избыток ацетилена и поддерживать достаточно высокую температуру серной кислоты во избежание полимеризации образовавшегося ацетальдегида он должен удаляться из сферы действия серной кислоты гидратация ацетилена в газовой фазе водяным паром при высокой температуре не находит широкого применения [c.120]

    Сернистые соединения образуются из сернистого алюминия и сернистого кальция, содержащихся в виде примесей в карбиде кальция. Сернистый алюминий разлагается с выделением сероводорода уже при низкой температуре сернистый кальций выделяет сероводород при температуре 80—90°. Поэтому количество сероводорода в ацетилене в значительной мере зависит от способа разложения карбида. При разложении карбида в генераторах системы карбид на воду —при большом избытке воды—сероводород в основном остается в шламовой воде. Содержание сероводорода в газе в этих условиях в среднем составляет 0,08 % (по объему). Ацетилен, полученный при высокой температуре в сухих генераторах системы вода на карбид , содержит в среднем 0,3% сероводорода в этих условиях возможно также образование сложных органических производных серы. [c.116]


    Минеральные вещества, содержащиеся в коксах, мало изменяются до температуры 1000° С. Отмечают главным образом обезвоживание алюмосиликатов, диссоциацию карбоната кальция и начало восстановления окислов и сернистых соединений железа. Но в диапазоне 1000—1500° С металлургический кокс с содержанием 10% золы теряет почти 8% своей массы, главным образом в форме окиси углерода, вследствие восстановления окислов железа, кремния и части извести и глинозема. Соответственно его теплотворная способность увеличивается почти на 400 кал/кг. Не удивительно, что эти все реакции возникают при температуре около 1500° С. Это объясняется образованием жидкой фазы, состоящей из смеси металлов, сернистых соединений и карбидов, где разбавление металлов уменьшает ее химическую активность и, таким образом, смещает равновесие [3]. [c.123]

    Нефтяные малосернистые коксы и брикеты из нефтяного кокса можно использовать для получения карбидов (кальция, кремния, бора и др.) и ферросплавов, широко применяемых для получения ацетилена, в абразивной промышленности, при изготовлении полупроводников, раскислителей, для улучшения свойств сталей и др. Большее внимание в этой работе уделяется применению в качестве ВОС сернистых и высокосернистых нефтяных коксов и иефте-коксобрикетов. [c.104]

    Применение сернистых коксов вызывает коррозию оборудования, токоподводящих штырей, повышенную трещиноватость электродных изделий, разрушение огнеупорной кладки прокалочных печей, газоходов и т. д. Некоторые готовые продукты, полученные на базе сернистых коксов, например карбид кальция, загрязняются сернистыми соединениями. [c.36]

    Промышленные опыты, проведенные Гипрокаучуком на базе сернистого нефтяного кокса замедленного коксования, показали принципиальную возможность и целесообразность использования этого вида углеродистого вещества в смеси с металлургическим коксом (в соотношении 1 1) для производства карбида кальция. [c.162]

    При содержании в шихте до 50 мае. % сернистого нефтяного кокса (3,9 мае. % серы) количество в карбиде кальция не превышает норм ГОСТ 1460—56. Удельный расход электроэнергии при этом снижается на 3,0% (на условный карбид кальция) по сравнению с работой печи полностью на металлургическом коксе. Резко снижается зольность карбида кальция. Замечено, что большое содержание в коксе летучих (более 8,0 мае. %) и мелочи ниже 3—4 мм приводит к ухудшению работы и санитарных условий обслуживания печи. [c.162]

    Технический ацетилен, получающийся при разложении карбида кальция водой, может содержать следующие примеси фосфористый водород и другие фосфины сероводород и органические сернистые 50 [c.50]

    Сернистые соединения образуются в основном из сернистого кальция (СаЗ), содержащегося в виде примеси в карбиде кальция. Сероводород содержится в неочищенном ацетилене лишь в незначительных количествах или совсем отсутствует, так как он хорошо поглощается карбидным илом. Однако при высокой температуре карбидного ила происходит выделение из него сероводорода. [c.51]

    Цианамид кальция получается нагреванием при высокой температуре — 1000°) в струе азота смеси извести и угля. При этом получается технический продукт, содержащий значительное количество примесей — окиси кальция, карбида кальция, угля и сернистых солей. Ниже приводим для примера состав (в %) такого продукта  [c.498]

    При наличии в известняке гипса карбид кальция выходит с примесью сульфида кальция СаЗ, который при получении ацетилена разлагается водой с выделением сероводорода НгЗ. Последний при сгорании ацетилена образует сернистый газ ЗОг, вредно действующий на организм человека и разрушающий металл. Содержание сероводорода в ацетилене должно быть не более 0,15%, содержание серы в известняке — не более 0,1%. [c.7]

    Неприятный запах технического ацетилена, напоминающий запах чеснока, обусловлен примесью фосфористого водорода. Согласно ГОСТ 1460—56 па карбид кальция, в ацетилене допускается содержание фосфористого водорода не более 0,08% (об.) и сернистых соединений в пересчете на сероводород не более 0,15% (об.). Фактически содержание фосфористого водорода в ацетилене иногда достигает 0,11%. Содержание фосфористого водорода должно быть строго ограничено, так как он не только ядовит (см. с. 203), по и склонен к самовоспламенению, особенно при [c.72]

    Сероводород НгЗ также является вредной примесью. Он образуется в основном при разложении водой сернистого кальция Са5, находящегося в карбиде кальция. Количество сероводорода в ацетилене зависит главным образом от способа разложения карбида кальция. При разложении с большим количеством воды (в генераторах системы карбид в воду ) большая часть серы остается в известковом иле в виде сульфидов и только часть ее в виде НгЗ переходит в ацетилен. В аппаратах, в которых разложение карбида кальция происходит в небольшом количестве воды (системы вода на карбид и контактная ), з загрузочных ретортах возможно повышение температуры, поэтому выделение из ила сероводорода с ацетиленом в этом случае больше. Возможное наличие его в ацетилене 0,08—1,5%. По ГОСТ 1460—56 допускается содержание сероводорода в ацетилене до 0,15% по объему. Повышенное содержание фосфористого водорода и сероводорода может снизить качество сварного соединения при сварке специальных сталей и некоторых цветных металлов. При сварке малоуглеродистой стали содержание фосфористого водорода и сероводорода до 0,1% (каждого) не оказывает заметного воздействия на качество шва. [c.26]


    При наличии примеси гипса карбид получается с примесью сульфида кальция (Са5), который при последующем получении ацетилена из карбида разлагается водой с выделением сероводорода (НдЗ). Сероводород сгорает при сжигании ацетилена в сернистый газ (ЗОз), разрушительно действующий на металлы. Кроме того, сернистый газ вреден и для здоровья обслуживающего персонала. Содержание сероводорода (НаЗ) в ацетилене не должно превышать 0,15%, поэтому содержание серы в известняке не должно быть выше 0,1%. [c.25]

    Производство карбида кальция и производство извести характерны высокими температурами процессов и выделением большого количества пыли само производство карбида кальция относится к числу взрывоопасных и огнеопасных. Как при обжиге известняка, так и при получении карбида кальция выделяется и значительное количество вредных газов, в основном окиси углерода (СО) образуются также сернистый газ (ЗОа) и ацетилен (С Н,). [c.169]

    Во время образования карбида кальция из печи выделя ются окись углерода и сернистый газ. Окись углерода (при работе с открытыми печами) тотчас же по выходе на поверхность шихты сгорает в углекислый газ поэтому вредное влияние ее [c.171]

    Известняки и уголь, содержащие значительное количество соединений серы, фосфора, мышьяка, магния, кремния и алюминия, не пригодны для производсгва карбида, как в том случае, когда последний должен быть употреблен для получения ацетилена, так и тогда, когда он идет в производство цианамида кальция. Если карбид содержит соединения серы, фосфора, кремния и мышьяка, то при разложении его водой вместе с ацетиленом выделяются водородистые соединения этих элементов. Водородистые соединения фосфора и кремния—легко разлагающиеся вещества они воспламеняются сами собой при обыкновенной комнатной температуре. Ясно, что их присутствие в ацетилене может быть причиной взрыва последнего. Кроме того, ацетилен, загрязненный водородистыми соединениями фосфора, мышьяка и серы, оказывает весьма вредное действие на организм человека. Мышьяковистый водород является сграшным ядом, который даже при вдыхании в весьма малых количествах причиняет смерть. Менее опасны, но все же очень вредны, фосфористый водород и сернистый водород. Их присутствие в аммиаке, выделенном из - цианамида кальция, крайне нежелательно, так как при окислении аммиака в азотную кислоту, они способны отравлять катализаторы, вследствие чего, процесс окисления замедляется и может остановиться вовсе. [c.88]

    Состав и химические свойства. Циаиплав содержит 42—47% цианистых солей кальция и натрия, т. е. примерно 20% (с колебаниями от 17 до 25%)) в пересчете иа синильную кислоту H N. Больше половины нианплава составляют примеси—хлористый натрий, хлористый кальций, цианамид кальиия, карбид кальция, сернистые соединения, известь, кремневая кислота и уголь. [c.566]

    Наличие метана и водорода обусловлено, вероятно, содержанием в карбиде кальция соответственно карбида алюминия (АЦСз) и металлического кальция. Отношение N2/02 равно 4,8, а не 3,7, как в воздухе, вследствие протекания окислительных процессов. Малорастворимые в воде примеси ацетилена снижают га-зовбираемость баллонов (см. стр. 176). Согласно ГОСТ 1460—56 на карбид кальция допускается содержание в ацетилене не более 0,08% фосфористого водорода и не более 0,15% сернистых соединений в пересчете на сероводород. [c.68]

    Поэтому мы здесь не будем останавливаться на всем многообразии расчетов производственных процессов в химической промышленности. Рассмотрим лишь типовые и наиболее распространенные в промышленной практике материальные и тепловые расчеты производственных процессов, как то а) термическую обработку некоторых видов органического и минерального сырья (газификация и коксование угля, газификация торфа, обжиг железного колчедана, электротермическое получение карбида кальция, ферросилиция и окиси азота), б) каталитические процессы синтеза и окисления аммиака, конверсии окиси углерода и окисления сернистого газа, в) электрохимические производства, г) один из наиболее слолсных физико-химических методов промышленной переработки сырья —сжижение и ректификацию газовых смесей в( частности воздуха). Приведенные расчеты производственных процессов охватывают собой значительную и наиболее сложную и важную часть процессов химической технологии. Освоение этих расчетов дает возможность технологу методически правильно подойти к расчету материального и теплового баланса почти любого химического производства. [c.265]

    Процесс Блэкмора заключается в дейст1вии пароВ очищаемых дестиллатов на карбид кальция. В результате получается сернистый кальций. Реакция протекает следующим образом  [c.224]

    Повышенная восстановительная способность сернистого нефтяного кокса была проверена при получении карбида кальция. Добавление 25—357о сернистого нефтяного кокса к каменноугольному способствовало получению на заводе карбида кальция с повышенным выходом из него ацетилена, что эквивалентно снижению удельного расхода электроэнергии (на 10— 20%) на тонну готовой продукции. [c.223]

    В руднотермических (рудовосстановительных) печах проводят восстановительные электротермические процессы, с помощью которых получают чистые металлы или сплавы металлов из руд, содержащих эти металлы в виде окислов или сернистых соединений. Так, из FeO получают чугун (процесс, аналогичный доменному), из МпО — марганец, из SiOa — кремний, из МоОз — молибден, из СаО (извести)—карбид кальция СаСг и т.д. [c.211]

    Промышленные опыты, проведенные Гипрокаучуком на основе сернистого кокса замедленного коксования, показали принципиальную возможность и целесообразность использования для производства карбида кальция этого вида углеродистого вещества в смеси с металлургическим коксом (в соотношении 1 1). При содержании в шихте до 50 вес. % сернистого нефтяного кокса (3,9 вес. % серы) количество HjS в карбиде кальция не превышает норм ГОСТ. Удельный расход электроэнергии при этом меньше на 3,0% (на условный карбид кальция ), чем в случае работы печи полностью на металлургическом коксе. Кроме того, резко снижается зольность карбида кальция. Однако большое содержание в коксе летучих (более 8,0 вес. %) и мелочи размером менее 3—4 мм приводит к снижению эффективности работы печи и ухудшению aHHTapHbix условий при ее обслуживании. [c.31]

    В процессе реакции частицы могут оставаться прежних размеров, увеличиваться и уменьшаться. Примерами реакций, при которых размеры частиц практически постоянны, могут служить обжиг сернистого колчедана, восстановление железных руд, азотирование карбида кальция, обжиг известняка, активирование древесного угля. Уменьшзние размеров частиц свойственно процессам горения, газификации углеродсодержащих материалов, хлорирования окиси урана и т. д. Термический крекинг нефтяного сырья в присутствии частиц кокса представляет собой один из немногих процессов, связанных с укрупнением частиц в ходе реакции. [c.407]

    Одним из основных физико-химических явлений, имеющих, место при обжиге твердых материалов, является их термическая диссоциация, т. е. разложение молекул на более простые. Диссоциация твердых веществ сопровождается обычно образованием газообразных продуктов — углекислоты, сернистого ангидрида, водяного пара. Одним из видов диссоциации при обжиге является кальцинация, т. е. удаление конституционной во,ты (связанной в виде гидратов) или углекислоты. Примерами кальцинации являются обжиг известняка и других карбонатов в производстве извести, соды и карбида кальция кальцинация бикарбоната натрия в производстве кальциниро- [c.117]

    Наличие СерниСтоГо гйза в продуктах сгорания ацетилена при использовании последнего для сварки или резки металлов вредно влияет на организм сварщика и ухудшает качество металла. Поэтому по ГОСТ 1460-56 содержание фосфористого водорода и сероводорода в ацетилене, получаемом из карбида кальция, не должно превышать соответственно 0,08 и 0,15%. [c.131]

    Черный цианид или цианплав, известный за границей под названием аэробренда, имеет вид блестящих серо-черных чешуек неправильной, формы от 1 до 2 мм толщины и представляет собой смесь цианистого кальция, цианистого натрия, хлоридов кальция и натрия, окиси кальция и углорода. Продукт содержит кроме того в небольшом количестве сернистые соединения, цианамид кальция, карбид, полуторные окислы и кремнекислоту. Получается черный цианид по методу Ьапс118 а сплавлением при 1400—1500° в электропечи технического цианида кальция с углем в присутствии хлористого натрия как плавня, с быстрым охлаждением плава на вальцах, орошаемых водой до температуры ниже 400°. Препарат полностью не растворяется в воде и чрезвычайно ядовит. На воздухе легко разлагается от действия влаги с выделением синильной кислоты. Поступает в продажу в железных барабанах различной емкости, непроницаемых для воздуха, помещенных в деревянную обрешетку. Мелкая тара в деревянную обрешетку не помещается. Содержание примеси (в%) для всех сортов, согласно стандарту, следующее  [c.41]

    Мы не будет останавливаться на всем многообразии расчетов производственных процессов в химической промышленности. Рассмотрим лишь типовые и наиболее распространенные материальные и тепловые расчеты а) термической обработки некоторых видов органического и минерального сырья (газификация и коксование угля, газификация торфа, обжиг железного колчедана, электротермическое получение карбида кальция, ферросилиция и окиси азота) б) каталитических процессов синтеза и окисления аммиака, конверсин окиси углерода, окисления сернистого газа, метилового спирта и метана в) полимеризации этилена и синтеза искусственных волокон (вискозного шелка)  [c.264]

    Карбид кальция получается сплавлением обожженной извести с антрацитом и коксом. К исходному сырью предъявляют жесткие требования в отношении содержания примесей, так как они ухудшают качество готового продукта, а в некоторых случаях присутствие примесей нарушает нормальный ход процесса получения карбида. Особенно вредна примесь фосфора, образующего фосфористый кальций СазРз, который при последующем разложении карбида водой дает ядовитый и в смеси с ацетиленом взрывоопасный газ — фосфористый водород РН3. Вредной примесью является также сера, которая образует сернистый кальций aS, а при разложении карбида водой — сероводород H2S последний при сжигании ацетилена сгорает с образованием сернистого газа SO2, вызывающего коррозию металлов. Примеси окислов магния и алюминия делают карбид кальция более тугоплавким. [c.602]

    Одним из основных физико-химических явлений, протекающих при обжиге твердых материалов, будет их термическая диссоциация, т. е. разложение молекул на более простые. Диссоциация твердых веществ сопровождается обычно образованием газообразных продуктов углекислоты (двуокиси углерода), сернистого ангидрида, водяного пара. Один из видов диссоциации при обжиге — кальцинация, т. е. удаление конституционной воды (связанной в виде гидратов) и углекислоты. Примерами кальцинации могут служить обжиг известняка и других карбонатов в производстве извести, соды и карбида кальция кальцинация бикарбоната натрия в производстве кальцинироваьной соды обезвоживание мирабилита (минерала состава Na2S04 10H,0) для получения безводного сульфата натрия и т. п. Кроме того, кальцинация представляет собой начальную стадию, предшествующую более сложным химическим реакциям при обжиге руд и различных смесей твердых минералов (шихты) в производстве солей, силикатов, в металлургии. [c.185]

    Вблизи сырьевой базы строят также предприятия,, использующие нетранспортабельное и малотранспортабельное сырье, например, сернистые газы, углеводородные газы нефтепереработки и др. Не только вблизи источников сырья, но и вблизи топливно-энергети- Сческих баз следует размещать такие производства, как, например, "производство карбида кальция, фарфоро-фаянсовое, химических, олокон и др. На производство 1 т карбида кальция расходуется - 1,5 т известняка, 0,6 т кокса и около 2800 квт-ч электроэнергии, ч На производство 1 т фарфоровых изделий расходуется 2,5—2,8 т сырья и 5—7 г условного топлива на 1 т вискозного шелка — око- ло 4 т сырья и 12 г условного топлива, на 1 т вискозного корда — свыше 4 т сырья и 9 г условного топлива.  [c.17]

    При гидролизе карбида кальция содержащиеся в нем примеси сульфида, фосфида и цианамида кальция разлагаются с образованием в основном фосфористых соединений, сероводорода и аммиака. В состав фосфористых соединений входит в основном фосфин РНз, небольшие количества самовоспламеняющегося ди-фосфина Р2Н4 и фосфорорганические соединения. Далее под термином фосфористый водород , обозначаемый PHg, понимается смесь PHg, Р2Н4 и фосфорорганических соединений. При взаимодействии ацетилена с мокрым GaS или a(SH)2 и температуре гидролиза карбида из сернистых соединений помимо сероводорода образуется дивинилсульфид. [c.72]


Смотреть страницы где упоминается термин Кальций сернистый, карбид: [c.140]    [c.105]    [c.8]    [c.101]    [c.222]    [c.759]    [c.3]    [c.2]    [c.253]    [c.202]   
Химия ацетилена (1947) -- [ c.20 ]




ПОИСК





Смотрите так же термины и статьи:

Кальций сернистый

Кальций сернистый, карбид сернокислый, карбид

Кальций сернистый, карбид фосфорнокислый, карбид

Карбид кальция



© 2025 chem21.info Реклама на сайте