Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Гемоглобин третичная

    Какую роль играют гидрофобные радикалы аминокислот в формировании центра связывания протомеров гемоглобина с гемом Постройте на эту тему рассказ, используя следующие термины гидрофобные группы гема , активный центр протомеров гемоглобина , третичная структура , неполярный кислород . [c.21]

    Все известные ферменты представляют собой длинные цепи из а-амино-кислот (относительная молекулярная масса порядка 0,5 млн), свернутые в компактную форму, в которых имеется несколько реакционноспособных участков. Изучение природы ферментов показало, что, помимо белка, многие из них содержат и другие соединения. Так, например, в составе окислительных ферментов были обнаружены органические соединения железа. Эти соединения у различных окислительных ферментов оказались одинаковыми по составу. Кроме того, было выяснено, что такие же соединения железа входят и в гемоглобин крови, переносящий кислород в организме человека и животных. Комплексное соединение железа (гем) можно отделить от белка. Однако после этого ни белок, ни гем не проявляют ферментативных свойств. Отсюда следует, что высокая активность и специфичность свойственны только сложной системе, состоящей из белка и гема. В состав различных ферментов входят и комплексные соединения других металлов. В некоторых ферментах обнаружены медь, цинк, марганец, хром и другие элементы. Для некоторых ферментов уже известна первичная структура, т. е. последовательность аминокислот в длинной цепи. Вторичная структура — общий характер спирали, образуемый цепью, приближенно установлена для нескольких ферментов. О третичной структуре, т. е. природе реакционноспособных поверхностных участков молекулы, известно очень мало. [c.149]


    Вторичные структуры миоглобина и гемоглобина представлены главным образом а-спиралями. Восемь отрезков полипептидной цепи являются относительно прямолинейными ю-спиралями эти отрезки содержат 80% аминокислотных остатков всей цепи, остальные 20% остатков приходятся на места сгибов, соединяющие между собой ja-спираль-ные отрезки. При укладывании цепи (третичная структура) образуется полость, в которой расположена гем-группа. [c.439]

    Для гемоглобина удалось также определить фазы многих рентгеновских отражений, а также определить его третичную структуру (рис. 15). [c.545]

    Анализ третичных структур миоглобина и гемоглобина Кендрью и Перутцем выявил расположение неполярных и полярных остатков в а-спиралях и взаимную ориентацию спиралей в глобулах. В соответствии с концепцией Козмана авторы отметили, что неполярные остатки, взаимодействуя между собой, преимущественно экранированы от водной среды, а полярные, напротив, чаще взаимодействуют с молекулами воды. [c.73]

    В работе Лима [151] реализован более содержательный подход к проблеме. Как уже сказано, раздельное рассмотрение вторичной и третичной структуры белка не имеет самостоятельного смысла — вторичная структура является элементом пространственной структуры глобулы, ею определяемым (см. стр. 220). Лим исходит из того, что глобула состоит из гидрофобного ядра и полярной оболочки. Целиком гидрофильные участки не могут образовать более одного витка спирали, так как спирализация препятствует взаимодействию с водой. Спира-лизуются лишь те гидрофильные участки, которые примыкают к спирали, скрепленной с ядром. Образование длинных спиралей возможно лишь из участков, содержащих гидрофобные боковые группы, которые входят в ядро. Целиком гидрофобные участки спиральны, если они находятся внутри глобулы. Смешанные участки спиральны, если гидрофильные остатки расположены на поверхности глобулы, а гидрофобные — внутри нее. Об этом свидетельствуют, в частности, результаты изучения гемоглобина (см. стр. 232). Для спиралей характерны скобы , состоящие из гидрофобных остатков и находящиеся в положениях i, i 4- 4. [c.251]

    Таким образом, при оксигенации гемоглобина происходит ряд последовательных конформационных событий. Триггером этих событий служит перемещение атома Ре в плоскость порфиринового кольца и соответствующая передвижка проксимального Гис кольца на 0,75—0,95 А. Это вызывает изменение третичной структуры, так как атом железа жестко связан с Гис Р8 и кольцо контактирует с 60 атомами глобина. Спираль Р перемещается к центру молекулы и выталкивает Тир НС 2(140) из [c.428]

    У ряда белковых соединений несколько сложных полипептидных цепей белка могут агрегироваться вместе, создавая более сложный комплекс определённого строения, называемый четвертичной структурой белка. Каждая полипептидная цепь, образующая четвертичную структуру, называется субъединицей и сохраняет свойственные ей первичную, вторичную и третичную структуры, однако биологическая роль комплекса в целом отличается от биологической роли субъединиц вне комплекса. Фиксация четвертичной структуры обеспечивается водородными связями и гидрофобными взаимодействиями между субъединицами. Например, молекула гемоглобина - белка с четвертичной структурой - состоит из четырёх субъединиц, окружающих гем (простетическую железосодержащую группу - железопорфирин) между субъединицами нет ковалентной СВЯЗИ, однако тетрамер представляет собой единое целое, в котором субъединицы тесно связаны и ведут себя в растворе как одна молекула. Наличие четвертичной структуры характерно также для других металлопротеинов и для иммуноглобулинов. При формировании четвертичной структуры белка образующийся комплекс может содержать, помимо субъединиц полипептидной структуры, и субъединицы иной полимерной природы, а также соединения других классов. [c.71]


    Третичная и четвертичная структуры белков определяются при помощи рентгеноструктурного анализа, который впервые был проведен применительно к миоглобину и гемоглобину Дж. Кендрью и М. Перутцем в Кембридже. Значение рентгеноструктурного анализа белков трудно переоценить, так как именно этот метод дал возможность впервые получить своеобразную фотографию белковой молекулы. Для получения информативной рентгенограммы необходимо было иметь полноценный кристалл белка с включенными в него атомами тяжелых металлов, так как последние рассеивают рентгеновские лучи сильнее атомов белка и изменяют интенсивность дифрагированных лучей. Таким образом можно определить фазу дифрагированных на белковом кристалле лучей и затем электронную плотность белковой молекулы. Это впервые удалось сделать М. Перутцу в 1954 г, что явилось предпосылкой Д 1я построения приближенной модели молекулы белка, которая затем была уточнена при помощи ЭВМ. Однако первым белком, пространственная структура которого была полностью идентифицирована Дж. Кендрью, оказался миоглобин, состоящий из 153 аминокислотных остатков, образующих одну полипептидную цепь, В результате было экспериментально подтверждено предположение Л. Полинга и Р. Кори о наличии в молекуле миоглобина а-спиральных участков, а также М. Перутца и Л. Брэгга о том, что они имеют цилиндрическую форму Несколько позднее М. Перутцем была расшифрована структура гемоглобина, состоящая из 574 аминокислотных остатков и содержащая около [c.43]

    Пример. Молекула гемоглобина состоит из полипептидных цепей (первичная структура), закрученных в спирали (вторичная структура), которые, в свою очередь, свернуты в клубок (третичная структура) и объединены по четыре (четвертичная структура). [c.546]

    Хотя нативная третичная структура каждого глобулярного белка отвечает минимуму свободной энергии и потому является самой устойчивой конформацией, какую только может принять данная полипептидная цепь, третичную структуру глобулярных белков не следует считать абсолютно жесткой и неподвижной. Многие глобулярные белки в норме претерпевают конформационные изменения при выполнении ими биологических функций. Например, молекула гемоглобина, о котором мы будем говорить дальще, изменяет свою конформацию при связывании кислорода и возвращается к исходной конформа- [c.198]

    По своей третичной структуре а- и -цепи гемоглобина очень сходны с миоглобином [c.202]

    Третий важный вывод заключается в том, что третичная структура а- и р-це-пей гемоглобина имеет много общего с третичной структурой миоглобина. Сходство третичной структуры этих двух белков можно сопоставить с присущей обоим белкам способностью связывать кислород, лежащей в основе их биологи- ческой функции. [c.202]

    В обоих белках (гемоглобине и миоглобине) гем прочно связан с белковой частью (глобином) с помощью 80 гидрофобных взаимодействий и одной координационной связью между имидазольным кольцом так называемого проксимального гистидина и атомом железа. Несмотря на многочисленные различия в их аминокислотных последовательностях, миоглобин и гемоглобино-вые субъединицы имеют сходную третичную структуру, включающую восемь спиральных участков. Гем вклинивается в щель между двумя спиральными участками кислород связывается по одну сторону порфирина, в то время как гистидиновый остаток координируется по другую. По-видимому, уникальное свойство гемоглобина связывать кислород зависит от структурных особенностей всей молекулы гемоглобина или миоглобина. [c.360]

    Для проявления биологической активности некоторые белки должны сначала образовать макрокомплекс, состоящий из нескольких третичных структур белковых субъединиц, которые связаны вторичными валентными силами (ионное притяжение, водородные связи). Подобные способы пространственной организации нескольких полипептидных субъединиц - это четвертичная структура белка, которая определяет степень ассоциации третичных структур в биологически активном материале. Например, белком с четвертичной структурой является гемоглобин, который состоит из четырех субъединиц (клубков) миогло-бина - дэух молекул а-гемоглобина, каждая из которых содержит гем. [c.272]

    Предположение о том, что 70% цепи находится в спиральной конформации, подтверждается результатами, полученными методом дейтерообмена. Скоулоди (1959) 01бнаружила при раосмотрбн и двухмерной проекции Фурье единичной ячейки миоглобина тюленя, что, несмотря на совершенно различный аминокислотный состав, миоглобины тюленя и кашалота им еюг чрезвычайную сходную третичную структуру. Перутц (1960) на основании трехмерного анализа гемоглобина пришел к заключению, что каждая из четырех субъединиц этой молекулы структурно сходна с миоглобином. При анализе миоглобина с разрешением в 2 А (этого еще недостаточно для атомного разрешения) группа Кендрью (1961) получила возможность сделать некоторые выводы о последовательности части аминокислот в миоглобине. [c.711]


    В нач. 50-х гг. была выдвинута идея о трех уровнях организации белковых молекул (К. У. Линдерстрём-Ланг, 1952)-первичной, вторичной и третичной структурах. Определены первичные структуры инсулина (Ф. Сенгер, 1953) и рибонуклеазы (К. Анфинсен, С. Мур, К. Хёрс, У. Стайн, 1960). По данным рентгеноструктурного анализа были построены трехмерные модели миоглобина (Дж. Кендрю, 1958) и гемоглобина (М. Перуц, 1958) и, т. обр,, доказано существование в Б, вторичной и третичной структур, в т. ч. а-спирали, предсказанной Л. Полингом и Р, Кори в 1949-51. [c.248]

    Например, третичная структура молекулы гемоглобина (миоглобина), включающая гем с атомом железа, представляет собой шарообразный клубок (глобулу). Часть пептидной цепи, которая не образует спирали, содержит аминокислоты с отрицательньш зарядом. [c.273]

Рис. 15. Третичная структура гемоглобина Видиы отдельные участки цепей со спиральной конфигурацией, плоские гемогруппы и сульфгидрильные группировки. Черные и белые пластинки соответствуют разным глобиновым частицам. Рис. 15. <a href="/info/35984">Третичная структура</a> <a href="/info/1433044">гемоглобина Видиы</a> отдельные участки цепей со <a href="/info/382027">спиральной конфигурацией</a>, плоские гемогруппы и сульфгидрильные группировки. Черные и белые пластинки соответствуют разным глобиновым частицам.
    Каким образом присоединение О2 к гемовому железу вызывает конформационное изменение гемоглобина Как указано в гл. 10 (разд. Б.4), при связывании с кислородом атом железа в геме, по-видимому, смещается в плоскости гемогруппы приблизительно на 0,06 нм [73]. Это смещение передается через гистидин F-8, и спираль F смещается в сторону гема в результате происходит изменение третичной структуры, приводящее к ослаблению водородных связей в области а1р2-контактов и солевых мостиков между субъединицами. Несмотря на тщательные рентгеноструктурные исследования, детали механизма, инициирующего конформационные изменения при присоединении О2, остаются неясными. Необходимо иметь в виду, что разрешение, которое удается получить при рентгеноструктурном исследовании кристаллов белков, позволяет установить локализацию легких атомов с достаточной точностью, в результате чего механизм передачи кооперативных эффектов не поддается непосредственному изучению и его приходится выяснять, исходя из изменений третичной структуры субъединиц при атшеплении лиганда от Р(т. е. окси-)- или при присоединении его [c.307]

    Большое сходство в третичной структуре с гемоглобином и миоглобином показывает выделенный из личинок одного из видов комара СкгугопотиЕ эритрокруорин, пространственная структура которого установлена Хубером н др. [241]. Высокая способность этого гемопротеина связывать кислсфод позволяет личинкам комара находиться в водной среде, бедной кислородом. [c.419]

    Апомиоглобин имеет богатую спиралями глобулярную структуру, подобную структуре миоглобина. В отличие от неустойчивой напоминающей кокон оболочки гема в цитохроме с в гемоглобине полость гема образована из жестких стабильных а-спиралей. Группа гема здесь не является основным элементом, определяющим укладку цепи апомиоглобин, например, образует третичную структуру и в отсутствие простетических групп (гл. 8), однако группа гема увеличивает ее стабильность [415, 461, 645, 646]. Более мягкие структурные требования к взаимодействию гема и белка в гемоглобинах отражает также тот факт, что для членов семейства глобинов [277, 634] инвариантна только общая картина неполярных контактов гема. Структурно эквивалентные положения у них заняты различными аминокислотными остатками. [c.251]

    В апоцитохроме имеется такой же жесткий участок связывания гема, как и в гемоглобине. В случае цитохромов Ь базовый набор слишком мал для того, чтобы установить, насколько инвариантны неполярные остатки в специфических положениях, взаимодействующих с группой гема. Как и в глобинах, участок, связывающий гем, имеет достаточно жесткую структуру стенки полости образованы двумя парами приблизительно антипараллельных спиральных сегментов, а дно представляет собой (З-складчатый лист [297]. Структура гемсвязывающего центра может свидетельствовать об определенной свободе, с которой можно расположить образующие полость неполярные остатки. Предварительные данные, основанные на сопоставлении последовательности гемсвязывающего фрагмента Ьг с третичной структурой Ьь [557], показывают, что в семействе цитохрома как и в случае глобинов, сохраняется лишь общая картина неполярных контактов, но не отдельные боковые цепи. [c.251]

    Пример дезоксигемоглобина показывает, почему бывает трудно распознать химическое взаимодействие, которое дает толчок решающим изменениям четвертичной или третичной структур белка запускающее событие должно быть структурно незаметным. В случае гемоглоб1Ша потребовались многие годы, прежде чем удалось установить, что пусковой механизм связан с атолюм железа, который приводит в движение субъединицы гемоглобина [666]. [c.257]

    На протяжении последних десятилетий в связи с повышением разрешающей способности рентгеноструктурного метода была расшифрована третичная структура более 1000 белков, в том числе гемоглобина, пепсина, химотрипсина, рибонуклеазы, лизоцима, трипсина п его ингибитора, ряда фрагментов иммуноглобулинов человека, цптохрома С, карбоаигидразы человека, аспартатампиотраисферазы, инсулина п др. Примеры трехмерной структуры некоторых из них представлены на рис. 1.21. [c.65]

    Под четвертичной структурой подразумевают способ укладки в пространстве отдельных полипептидных цепей, обладаюгцих одинаковой (или разной) первичной, вторичной или третичной структурой, и формирование единого в структурном и функциональном отношениях макромолекулярно-го образования. Многие функциональные белки состоят из нескольких полипептидных цепей, соединенных не главновалентными связями, а нековалентными (аналогичными тем, которые обеспечивают стабильность третичной структуры). Каждая отдельно взятая полипептидная цепь, получившая название протомера, мономера или субъединицы, чагце всего не обладает биологической активностью. Эту способность белок приобретает при определенном способе пространственного объединения входягцих в его состав протомеров, т.е. возникает новое качество, не свойственное мономерному белку. Образовавшуюся молекулу принято называть олигомером (или мультимером). Олигомерные белки чагце построены из четного числа протомеров (от 2 до 4, реже от 6 до 8) с одинаковыми или разными молекулярными массами —от нескольких тысяч до сотен тысяч. В частности, молекула гемоглобина состоит из двух одинаковых а- и двух 3-полипептидных цепей, т.е. представляет собой тетрамер. На рис. 1.23 представлена структура молекулы гемоглобина, а на рис. 1.24 хорошо видно, что молекула гемоглобина содержит четыре полипептидные цепи, [c.68]

    В настоящее время известно более 100 мутантных гемоглобинов. Некоторые из замен являются безвредными - гповерхност-ными заменами, тогда как другие, которые затрагивают кислородсвязывающие участки, третичную структуру или взаимо- [c.173]

    Свойства гемоглобина демонстрируют динамическое поведение белка. И третичная, и четвертичная структуры НЬ быстро и непрерывно осциллируют между окси- и Зезокси-конформа-циями. Присоединение лиганда вызывает сдвиг конформацион-лого равновесия. Это и есть ЭКВ. [c.215]

    Дальнейшие подробности можно найти в оригинальной статье Перутца [23], в которой рассмотрен также кислотный эффект Бора. Обсуждая эти конформаци-онные явления, Перутц справедливо указывает, что белок —динамическая система. И третичная, и четвертичная структуры гемоглобина быстро и непрерывно осциллируют между ок-си- и дезокси-конформация-ми. В присутствии лиганда происходит не выключение дезокси-конформации, но сдвиг конформационного равновесия [23]. Рассмотренные Перутцом явления ярко выражают ЭКВ (см. стр. 408). Сдвиг электронной плотности в геме вызывает конформационную перестройку глобулы. [c.432]

    Оказалось, что а- и р-цепи, образующие макромолекулу гемоглобина, имеют много общего в третичной структуре, в частности, почти идентичную степень спирализации. Этот белок достаточно консервативен, так как его третичная и четвертичная структуры у различных видов позвоночных животных приблизительно одинаковы. Гемоглобин и миоглобин представляют единое семейство белков, образованное, возможно, путем дубликации одного предкового гена, что и предопределяет высокую их гомологию и сходные функции. [c.44]

    На рис. 85 схематично изображена структура цепи Р-гемогло-бина. Черные точки изображают отдельные аминокислоты (их 146), связанные в цепь. Последовательность этих аминокислот образует первичную структуру этого фрагмента белковой молекулы. Конформация цепи в трехмерном пространстве, изображенная фигурой, похожей на свернутую змею. Рис. S5. Пространственная отражает третичную структуру структура цепи р-гемоглобина цепи. Внутри обведенной фигуры [c.508]

    Пэтел и сотр. [69] кроме спектров миоглобина (см. разд. 14.2.4.1) исследовали также спектры водных растворов окси-и дезоксигемоглобинов в области от О до —5 т. В спектрах свободных р-цепей были обнаружены резонансные сигналы обменивающихся NH-протонов индольного кольца триптофанов Л-12 и С-3 при —0,2 и —0,5 т. Их положение фактически не зависит от степени окисления гем-групп или от ассоциации в некооперативный Р4-тетрамер. Ни для одного из состояний Р-цепей не было обнаружено сигналов в области ниже —0,6т, в отличие от миоглобина (см. предыдущий раздел). Триптофан Л-12 из а-цепей в этой области не дает сигнала обменивающегося протона. В частности, примечательно, что триптофановые остатки действительно слишком удалены от гем-группы, чтобы можно было ожидать значительных сдвигов за счет сверхтонкого взаимодействия или эффектов кольцевого тока, что согласуется с этими наблюдениями. Тем не менее спектры окси- и дезокси-форм кооперативного тетрамера (ар)г, т. е. интактного гемоглобина, заметно различаются. Было высказано предположение, что смещение пика при —2,18 т, соответствующего одному протону в спектре оксигемоглобина НЬОг, к —4,14 г при дезоксигенации указывает на перестройку четвертичной структуры, которая сопровождает это превращение (см. с. 375), или на изменение третичной структуры, связанное с этой перестройкой. [c.378]

    Аллостерическая регуляция осуществляется воздействием не на активный центр молекулы Б, а на другой (аллостерич.), посредством к-рого осуществляется регуляция яктивного центра, напр, активация присоединения кислорода к гемоглобину. Гемоглобин пока единственный Б, с четвертичной структурой для к-рого определена структура с разрешением 0,3 нм (3 А) Этот Б. состоит из двух пар субъединиц (а- и Р-цепи), каждая из к-рых по своей третичной структуре практически идентична миоглобину и имеет такой же, как в миоглобине, активный центр. Присоединение первой молекулы кислорода активирует присоединение молекул кислорода к остальным трем атомам железа гем-групп др, субъединиц. Зависимость насыщения кислорода от его парциального давления имеет S-образный вид. Как показал Перутц (1960), присоединение и отдача кислорода сопровождается существенными кон-формационными изменениями четвертичной структуры — смещением субъединиц на расстояние порядка 0,7 пм (7 А) Родственный гемоглобину миоглобин, не имеющий четвертичной структуры, подобным свойством не обладает Второй сравнительно хорошо изученный пример аллостерич. Б.— фермент аспартаткарбамоилтрансферааа — первый фермент в цепи реакций биосинтеза пиримидиновых производных. Этот фермент (мол. масса 300 ООО) состоит из двух субъединиц с мол. массой 90 ООО, осуществляющих катализ, и четырех регуляторных субъединиц с мол. массой по 30 ООО. Конечный продукт указанной цепи реакций (цитидинтрифосфат) взаимодействует с регуля-торйыми субъединицами, в результате чего активность фермента снижается и вся цепь реакций прекращается (регуляция по типу обратной связи). [c.123]

Рис. 8-11. А. Положение инвариантных аминокислотных остатков (красные черточки), общих для а- и Р-цепей гемоглобина лошади и миоглобина кашалота. Черными черточками показаны положения, занятые идентичными аминокислотными остатками в а- и Р-цепях гемоглобина. Б. Сходство третичных структур р-цепи гемоглобина лошади и миоглобина кашалота. Красный диск - гемогруппа. Рис. 8-11. А. Положение <a href="/info/566694">инвариантных аминокислотных</a> остатков (красные черточки), общих для а- и Р-<a href="/info/628965">цепей гемоглобина</a> лошади и <a href="/info/574076">миоглобина кашалота</a>. Черными черточками показаны положения, занятые идентичными аминокислотными остатками в а- и Р-<a href="/info/628965">цепях гемоглобина</a>. Б. Сходство <a href="/info/35984">третичных структур</a> р-<a href="/info/628965">цепи гемоглобина</a> лошади и <a href="/info/574076">миоглобина кашалота</a>. Красный диск - гемогруппа.

Смотреть страницы где упоминается термин Гемоглобин третичная: [c.271]    [c.274]    [c.223]    [c.224]    [c.171]    [c.220]    [c.60]    [c.126]    [c.58]    [c.200]    [c.202]    [c.210]    [c.215]   
Молекулярная генетика (1974) -- [ c.96 , c.98 ]




ПОИСК





Смотрите так же термины и статьи:

Гемоглобин



© 2025 chem21.info Реклама на сайте