Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Дрожжи элементы

    В бытовых условиях возможно применение сусла, например, из сахара, которое не содержит необходимых для размножения дрожжей элементов питания, а солод или другие материалы, содержащие питательные элементы для дрожжей, отсутствуют. В таком случае достаточное количество дрожжей должно быть внесено в сусло сразу, Необходимое их количество можно оценить следующим образом. Известно, что в условиях промышленного производства спирта, например, из мелассы, содержащей 17—18% сахаров, в конце брожения 100 л зрелой бражки содержат 1,5—2 кг дрожжей в пересчете на прессованные дрожжи 75% влажности, то есть таких, какие поступают в розничную торговлю. Это означает, что для быстрого и качественного брожения сусла, в котором дрожжи не будут размножаться, достаточно 75—100 г прессованных дрожжей на 1 кг сахара. Этого количества дрожжей с избытком достаточно для брожения сусла из любого другого материала, содержащего необходимые продукты питания для размножения дрожжей. В любом случае качество спирта будет выше, когда дрожжи в процессе брожения размножаются. Это возможно, если сусло содержит все элементы питания, необходимые для их жизнедеятельности. [c.117]


    Согласно второму способу, в нестерилизованное сусло вносится такое количество культурных дрожжей, чтобы брожение осуществлялось преимущественно ими, а брожение под действием уже имевшихся в сусле микроорганизмов из-за их малочисленности относительно культурных, было бы не существенным. Понятно, что второй способ с экономической точки зрения более приемлем и именно он используется в условиях крупного производства плодово-ягодных вин. в бытовых условиях можно воспользоваться и первым способом. Однако преимущества применения чистой культуры дрожжей будут реализованы не в полном объеме, если сусло не содержит необходимых для жизнедеятельности дрожжей элементов питания. Полноценное питание для винных дрожжей содержит только виноградное сусло, то есть виноградный сок. Сусло из остальных ягод и плодов содержит достаточное для жизнедеятельности дрожжей количество витаминов и микроэлементов, однако количество фосфора находится в нем на пределе необходимого. В сусле из яблок и груш количество азотистых веществ близко к минимально необходимому, из остальных — недостаточно. [c.118]

    Одним из перспективных направлений биохимического синтеза является получение белковых веществ из нефти. Опыты показали, что при условии подкормки бактерий соединениями N, Р, К, Mg и ничтожными количествами некоторых других элементов (Fe, Zn, Си, Мп) такое получение возможно. По аминокислотному составу выран енные на углеводородах нефти дрожжи сходны с животными белками и значительна превосходят растительные. Производство их уже начинает осуществляться в промышленном масштабе. [c.569]

    В состав клеточной массы дрожжей, бактерий, грибов входят углерод (47—51%), кислород (30—40 %), азот (5—14%), водород (6—8%), а также минеральные элементы питания — зольные вещества (5—8 % ), содержащие калий, фосфор, натрий, магний, серу, железо, кальций и др. Высококачественный аминокислотный состав белка, близкий к казеину, наличие в клеточной массе витаминов (рибофлавина, эргостерина, пантотеновой кислоты) характеризуют ценность микробной биомассы как заменителя животного белка и как источника для получения биологически ценных компонентов [2,8]. [c.8]

    Биотехнологическая система. БТС характеризуется большим разнообразием технологических процессов и их аппаратурным оформлением, наличием прямых и обратных связей между элементами. Конкретное аппаратурное оформление БТС зависит от особенностей подготовки питательных сред и сырья для культивирования микроорганизмов и получаемого целевого продукта микробиологического синтеза [7, 8]. В биотехнологической системе реализуются различные процессы обработки материалов механические, химические, тепловые, гидродинамические, диффузионные и биохимические. Рассмотрим в качестве примера технологическую схему производства белковой биомассы дрожжей из н-парафинов нефти (рис. 1.8). Схема включает ряд основных стадий производства, в которых происходит последовательная переработка исходного сырья в целевой продукт. [c.14]


    Поскольку с помощью методов клонирования у дрожжей были выделены все элементы, необходимые для репликации и наследования хромосом — ориджины репликации, теломеры и центромеры,— то оказалось возможным создать искусственную хромосому, состоящую из соединенных в.месте двух теломер, центро.меры, последовательности ARS и ДНК наполнителя , роль которой может играть ДНК с любой последовательностью, например ДНК фага лямбда. Оказалось, что искусственная хромосома поддерживается в дрожжах, причем стабильность ее наследования не намного ниже, чем стабильность собственных дрожжевых хро.мосом. [c.72]

    О потребности дрожжей в питательных веществах судят по их химическому составу, который зависит от питательной среды, условий культивирования дрожжей и их физиологических особенностей. Средний элементарный состав дрожжевых клеток (в %) углерод 47, водород 6,5, кислород 31, азот 7,5—10, фосфор 1,6—3,5. Содержание других элементов незначительно кальция 0,3—0,8%, калия 1,5—2,5, магния 0,1—0,4, натрия 0,06—0,2, серы 0,2%. В дрожжах найдены микроэлементы (в мг/кг) железо 90—350, медь 20—135, цинк 100—160, молибден 15—65. [c.197]

    Сок 1 содержит около 6—8%, а сок II и III —2—3% экстрактивных веществ. Последние преимущественно состоят из сахаров и элементов золы. Морковный сок можно использовать по четырем направлениям 1) упаривание в морковную или тыквенную патоку 2) переработка на дрожжи  [c.404]

    Состав и концентрация питательной среды для культивирования дрожжей обуславливает скорость их размножения и конечный выход продуктов. Для конструктивного и энергетического обмена дрожжей используют сахара, азотистые соединения, зольные элементы и кислород воздуха. [c.85]

    Подобные регуляторные элементы, получившие название энхансеров (усилителей), широко распространены в генах многоклеточных эукариот, причем в отличие от генов дрожжей их действие осуществляется не только в положениях перед стартом транскрипции, но и сохраняется при перемещении в 3 -район гена. Оказалось, что ряд из вышеупомянутых нуклеотидных мотивов, обычно обнаруживаемых в промоторном районе, обладают свойствами энхансеров. [c.203]

    В дрожжах обнаружены генетические регуляторные элементы типа прокариотических репрессоров. Некоторые из них интенсивно изучаются, в частности репрессор гена GAL. Этот белок состоит по крайней мере из двух функциональных доменов. Один [c.250]

    Все перечисленные выше структурные элементы встречаются в клетках высокоорганизованных микроорганизмов, например дрожжей. Структура бактерий гораздо примитивнее. [c.20]

    Готовя синтетические среды, необходимо обеспечить полноценный комплекс минеральных веществ. Кроме калия, фосфора, магния и других элементов, которые добавляют в питательную среду в сравнительно больших количествах, иногда для нормального развития культуры необходимо незначительное количество некоторых элементов. Так, несколько микрограммов кобальта, марганца и меди на 100 г питательной среды изменяют образование витаминов группы В в биомассе дрожжей. Чтобы выяснить воздействие этих микроэлементов на рост культуры микроорганизмов и биосинтез различных веществ, опыты необходимо проводить в среде, приготовленной на бидистиллирован-ной воде из перекристаллизованных солей, при использовании посуды из особого стекла или особой пластмассы. [c.53]

    В небольшом количестве производится также порошкообразный технический лигносульфонат. Для его получения используют распылительные сушилки, аналогичные применяемым для сушки кормовых дрожжей. Весьма ограниченная продолжительность контакта в сушилке лигносульфоната с теплоносителем обеспечивает сохранение физико-химических и физико-мехаиических свойств продукта. Подаваемый на сушилку раствор должен быть предварительно сконцентрирован до массового содержания 40 % сухих веществ, т. е. находиться на грани полного удаления свободной воды. При применении в качестве теплоносителя не содержащих зольных элементов дымовых газов их разбавляют воздухом до температуры 500 °С. Часовая испарительная способность сушилки составляет 7—10 кг/(м -ч) влаги. Получаемый порошкообразный продукт характерен очень высокой дисперсностью (по существу, это пудра), он полностью сохраняет водорастворимость, его насыпная масса равна 500— 550 кг/м . Порошок фасуется в бумажные мешки. При его транспортировке и хранении следует учитывать гигроскопичность сухих лигносульфонатов (см. рис. 7.7). В условиях повышенной влажности порошок в мешке превращается в твердый монолит. [c.291]

    Общая схема биологической переработки предгидролизатов. Направление совершенствования. На рис. 12.1 представлена схема подготовки предгидролизатов к биохимической переработке, а на рис. 12.2 — схема выращивания дрожжей, сгущения и сушки. Если сопоставить эти схемы с аналогичными схемами переработки гидролизатов перколяционных варок, то следует сделать вывод, что практически все элементы схем переработки предгидролизатов заимствованы в гидролизной промышленности. Исключение составляет лишь ферментация, осуществляемая в одну ступень, тогда как на всех гидролизных заводах ее проводят в 2—4 ступени. Практика показала, что при 2—4-ступенчатой ферментации на 10—20 % увеличивается выход дрожжей, на 40—70 % снижается уровень загрязнения отработанной жидкости. [c.353]


    Составление сусла. Ранее мы отмечали, что брожение сусла возможно только при наличии необходимых для жизнедеятельности дрожжей элементов питания. Полноценное питание для дрожжей содержится только в винофадном соке. Сусло из остальных плодов и ягод содержит в достаточном количестве витамины и микроэлементы, однако в большинстве случаев содержание усвояемых дрожжами азота и фосфора в нем недостаточно. Поэтому их необходимо вносить дополнительно. Применительно к суслу из конкретных плодов и ягод состав и количество вносимых элементов питания могут отличаться и точное их количество можно определить только в специализированных лабораториях, но в общем случае рекомендуется их вносить всегда в следующих количествах на 1 л измельченных плодов или сока 1 г сухого молотого или 1,5 — 2 г измельченного зеленого солода, или 0,2 — 0,3 г фосфорнокислого аммония в качестве азотного и фосфорного питания, или 0,1 — 0,2 мл раствора наЩатыря в качестве азотного питания. [c.103]

    Послеспиртовая барда, содержащая в основном пентозные сахара (0,7 - 0,8% РВ), после охлаждения поегупает в дрожжерастительное отделение. При использовании барды в качестве питательной среды для выращивании кормовых дрожжей в нее добавляют петательные соли, содержащие азот, фосфор, калий и другие необходимые для росга дрожжей элементы, Выращивание дрожжей производится в дрожжерастительных аппаратах при интенсивной аэрации среды воздухом, обеспечивающим клетки дрожжей необходимым количеством кислорода. [c.19]

    Другим новым источником получения протеина являются микроорганизмы, например дрожжи и бактерии. Они выращиваются в различных средах — целлюлозе, углеводородах или крахмале. Вообще культивирование отдельных организмов возможно только на органических субстратах. Найти микробы с высоким содержанием протеина, способные потреблять углеводороды, не так уж легко, однако ряд технологических процессов, основанных на использовании газойля, парафинового воска и даже метана, уже прошли или проходят стадию разработки. Практически во всех этих процессах микроорганизмы выращиваются в водоуглеводородных эмульсиях, куда добавляют стимулирующие рост элементы (азот, двуокись углерода, различные ионы металлов, сульфаты). Когда вырастет достаточное количество микроэлементов, их отделяют от питательной среды путем фильтрования или центрифугования, промывают и сушат. Для кормления животных могут использоваться и собственно сухие микроорганизмы. [c.274]

    Для рещения экологических проблем предложено использовать бактерии, ранее селекционированные для получения кормового белково-витаминного концентрата (БВК) [4]. Сами БВК, содержащие, наряду с углеводородокисляющими микроорганизмами, в значительном количестве биогенные элементы, оказывают благоприятное действие на биологические свойства почвы, нормализуют ее микробиологические и биохимические параметры, снижают остаточное содержание нефтепродуктов и токсичность почвы для растений, т.е. могут использоваться для восстановления плодородия [45]. В частности, БВК паприн — продукт крупнотоннажного биотехнологического производства — представляет собой биомассу дрожжей, выращенных на -алканах основную его часть составляют белки, липиды, полисахариды, нуклеиновые кислоты. К информации такого рода, безусловно, следует относиться с большой долей осторожности. [c.390]

    Грибы . Они относятся к бес-хлорофиловьгм растениям, поэтому не нуждаются в солнечной энергии. Грибы, образующие преимущественно нитевидные формы (мицелий), называются плесенями. Плесень —это очень длинные, разветвленные, напоминающие волосы нити или гифы, которые прн росте образуют видимые невооруженным глазом массы, так называемый мицелий. Грибы, развивающиеся преимущественно в виде одноклеточных элементов, называются дрожжами. Резко разграничить дрожжи от плесени нельзя. Некоторые из них могут расти и в виде дрожжеподобных клеток, и в виде нитей с образованием мицелия. Это явление зависит от внешних условий среды. Например, низкие температуры благоприятствуют образованию плесени, тогда как некоторые вещества, входящие в состав питательных сред (кровь, глюкоза, соединения, содержащие группу —5Н), и отсутствие кислорода (анаэробиоз) благоприятствуют развитию дрожжеподобных клеток. Существуют различные вещества (сивушные масла, ионы кобальта, камфора и др.), способствующие переходу из дрожжеподобной формы в нитевидную. [c.272]

    Роль рассматриваемой подсистемы сводится в большинстве случаев к механической, химической или физико-химической обработке суспензии микроорганизмов с целью выделения целевого продукта микробиологического синтеза из жидкой фазы, получению его в концентрированном виде для последующего превращ,е-ния в товарную форму (сухой порошкообразный или гранулированный продукт). Подсистема разделение биосуспензий может включать разнообразные технологические элементы, в которых реализуются типовые процессы сепарациоиное разделение, фильтрационное разделение и концентрирование, флотационное концентрирование, отстаивание и др. Следует отметить, что особенности микробиологических сред, содержащих микробные клетки (дрожжи, бактерии), клеточные мицелии (грибы) и т. д., предопределяют на практике выбор того или иного технологического процесса, а также схемы соединения технологических элементов на данной стадии. Так, интенсивный процесс сепарационного разделения твердых и жидких сред в поле центробежных сил во многих случаях, в частности для бактериальных суспензий, мало эффективен ввиду незначительного различия плотностей клетки и жидкой фазы. [c.237]

    Промоторные элементы генов одноклеточных эукариот — дрожжей — содержат сайты инициации (И), нуклеотидную последовательность ТАТА (обычно ТАТААА), а также другие элементы — активирующие последовательности (АП, UAS, англ. upstream a tivating sequen es), находящиеся перед сайтом инициации транскрипции (рис. 111, а). Кроме того, промотор может содержать элементы оператора О, участвующего в репрессии транскрипции. Расстояние между ТАТА-элементом и сайтом инициации может варьировать от 40 до 120 п. н., и в отличие, например, от промоторов позвоночных в промоторах дрожжей правильная точная инициация транскрипции сохраняется при изменении расстояния между сайтом инициации и ТАТА-элементом. Инициаторный элемент представляет собой особый участок, включающий нуклеотидную последовательность [c.196]

    Благодаря использованию большого набора мутаций по промоторам и генам активирующих белков дрожжей удалось выяснить некоторые особенности взаимодействия белков-активаторов с АП, а также характерные свойства этих белков. Белок GAL4 активирует гены, необходимые для катаболизма галактозы. GAL4 связывается с АП, представленной повторяющимися элементами по 17 п. н-Степень активирующего действия пропорциональна числу этих элементов в промоторе. Функция связывания ДНК и активации транскрипции принадлежит разным участкам белка GAL4, который содержит 881 аминокислоту. 73 остатка с N-конца молекулы белка достаточны для обеспечения специфического связывания с ДНК. Эгот участок связывает ионы цинка и содержит характерную структуру — цинковые пальцы , обнаруженные в целом ряде белков, активирующих транскрипцию (см. раздел 4 этой главы). Два других дискретных участка белка, включающих аминокислоты 149—196 и 768—881, достаточны для обеспечения активации транскрипции. Эти участки содержат кислые аминокислотные остатки. По-видимому, в разных активаторных белках эти районы обладают [c.196]

    Содержащегося в мелассе фосфора, а нередко и азота, недост точно для нормальной жизнедеятельности дрожжей, поэтому в не добавляют в качестве источника первого ортофосфорную кислоту, качестве источника второго — сульфат аммония, карбамид (моч вину) или диаммонийфосфат, содержащий оба элемента. [c.30]

    Калий. Калий необходим не только как питательный элемент, но п как стимулятор размножения дрожжей. Стимулирующее дей-стБие объясняется его существенной ролью в окислительном фос-форилировании и в процессах гликолиза. Движение неорганического фосфора внутрь клетки специфично стимулируется калием. Калий активирует дрожжевую альдолазу, необходим для действия фермента иируваткарбоксилазы и влияет, так же как азот и сера, на липидный обмен дрожжевых клеток. [c.199]

    Х14Г14Н4Т 10Х14АГ15 — для изготовления деталей оборудования, работающего в средах слабой агрессивности (органических кислотах невысоких концентраций и умеренных температур), а также оборудования по производству кормовых дрожжей для кислородных компрессоров, установок газоразделения, работающих при температурах до 196 °С, а также как жаропрочные, применяющиеся при температуре до 700 °С. Сталь 10Х14АГ15 используется для изготовления деталей торгового оборудования, приборов бытового назначения (кроме режущих элементов, холодильников, стиральных машин), [c.65]

    У эукариот (все организмы, за исключением бактерий и синезеленых водорослей) также широко распространены М г.э., к-рые аналогичны М.г.э. прокариот по общему плану строения, способу транспозиции и генетич. эффекту. Элементы, подобньге 18 и гранспозонам, найдены у мн. эукариот (грибы, растения, млекопитающие и др.). Разл. эписомоподобные факторы обнаружены в ядре и цитоплазме дрожжей Умеренным фагам бактерий соответствуют онкогенные вирусы, в частности РНК-содержащие вирусы (ретровирусы) позвоночных. [c.80]

    В геномах низших эукариот обнаружены М.г.э. разных типов, среди к-рых лучше всего изучена т. наз. последовательность Ту1 дрожжей. Этот элемент представлен в геноме 4-35 кого1ями, локализация к-рых отличается у разных штаммов. Ту1 содержит 5,6 тыс. пар нуклеотидов и ограничен прямыми повторами, содержащими ок. 300 пар нуклеотидов (т. наз. 8-последовательностн). Копии Ту1 не полностью идентичны друг другу и составляют таким образом гетерог. семейство. В том случае, если две копии Ту1 заключают между собой клеточшле гены, они перемещают нх по геному, т.е. образуют истинные транспозоны. Включение Ту1-подобных элементов в регуляторные зоны генов может вызывать не только инактивацию локусов, но и изменения механизма их регуляции, что, по-видимому, связано с присутствием в нуклеотидной последовательности Ту1 специфич. участков узнавания регуляторных белков. [c.80]

    Значит, роль в спонтанной М, играют специфич. мигрирующие генетические элементы. Частота М. с их участием составлвет у простейших организмов (бактерий, дрожжей) ок. 10 на поколение, а при определенных условиях может эиачитбльио уве.гшчнваться. В результате встраивания подобных элементов в гены может нарушаться их активиость, изменяться шстема регуляции и т.п. [c.155]

    В зависимости от метода последующей переработки получаемые гемицеллюлозные гидролизаты отбираются отдельно или одновременно с продуктами гидролиза трудногидролизуемых полисахаридов. Так, длй производства этилового спирта, кормовых дрожжей все моносахариды, образующиеся из легко- и трудногидролизуемых полисахаридов, собираются вместе. Никакой предваретельной обработки растительного сырья не производится. Наоборот, при получении чистых пентозных гидролизатов для выделения кристаллической ксилозы и ее переработки в пятиатомный спирт ксилит растительное сырье, богатое пентозанами, вначале подвергается обработке горячей водой для удаления белков, дубильных веществ, пектинов и части минеральных веществ. Последние остатки растворимых катионов удаляются промыванием сырья теплой разбавленной серной кислотой. Эта обработка носит название облагораживания сырья. Только после этого производится пентозный гидролиз в условиях, исключающих одновременный гидролиз целлюлозы. Для этого используют большую разницу коэффициентов б для гемицеллюлоз и целлюлозы. Например, при получении пентозных гидролизатов из хлопковой шелухи водную обработку ведут 1—2 ч при 120° С, после чего остаток тщательно отмывают и подвергают кисловке 0,1 %-ной серной кислотой для удаления зольных элементов. Иногда эти обе обработки совмещают. Затем производится пентоз-ныи гидролиз 1—2 ч при 125° С с 0,57о-ной серной кислотой. [c.409]


Смотреть страницы где упоминается термин Дрожжи элементы: [c.112]    [c.322]    [c.322]    [c.292]    [c.167]    [c.198]    [c.227]    [c.230]    [c.105]    [c.102]    [c.111]    [c.518]    [c.167]    [c.196]    [c.198]    [c.227]    [c.230]   
Гены (1987) -- [ c.472 , c.473 ]




ПОИСК





Смотрите так же термины и статьи:

Дрожжи



© 2025 chem21.info Реклама на сайте