Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Коагуляция в туманах

    Учение об оптических свойствах коллоидных и микрогетерогенных систем является одним из основных разделов коллоидной химии. Оптические свойства золя определяются свойствами коллоидных частиц, поэтому, изучая оптические свойства системы, можно установить размер, форму и строение частиц,, не видимых в обычный микроскоп. С помощью ультрамикроскопических наблюдений коллоидных систем удалось проверить основные молекулярно-кинетические представления, долгое время носившие гипотетический характер изучение оптических свойств способствовало количественному толкованию таких процессов, как диффузия, броуновское движение, седиментация, коагуляция. Наконец, ввиду того,, что космическая пыль, туманы, облака и тончайшие взвеси твердых частиц в морской и речной водах являются коллоидными и микрогетерогенными системами, сведения об оптических свойствах этих систем имеют и весьма важное практическое приложение в астрофизике, метеорологии, оптике моря. Вождение самолетов и кораблей в тумане, фотографирование с помощью инфракрасных лучей также имеют непосредственное отношение к оптике коллоидных систем. Эта область науки сделала значительные успехи в последние годы в связи с развитием авиации, астронавтики и т. д. [c.33]


    В литературе имеются указания, что коагуляция атмосферных аэрозолей может быть вызвана разбрасыванием с самолета высокодисперсного песка, частицы которого несут электрический заряд, по знаку обратный заряду частиц аэрозолей. Другой метод искусственного рассеивания облаков и туманов с помощью коагуляции заключается в распылении в аэрозоль растворов гигроскопических веществ, например, концентрированных растворов хлорида кальция (В. А. Федосеев, 1933 г.). Капельки этой жидкости захватывают капельки воды, укрупняются и выпадают в виде дождя. Для разрушения переохлажденных атмосферных аэрозолей можно применять также дымы иодида серебра или, иодида свинца, частицы которых являются зародышами и вызывают в облаках образование кристалликов льда. [c.362]

    Акустическую коагуляцию пыли и туманов используют лишь перед их очисткой под действием сил тяжести нли инерционных сил. В качестве примера на рис. У-54 показана схема установки для акустической коагуляции аэрозолей в процессе сепарации конденсата из попутных и природных газов при их добыче. Газ, находящийся под избыточным давлением 10 ООО—20 ООО кн м  [c.243]

    Невозможно указать точные границы применимости тех или иных физических и химических процессов к какому-либо из принципов обезвреживания выбросов или строго соотнести их с определенными агрегатными состояниями загрязнителей. Так, процессы гравитационного и инерционного осаждения дисперсной части выбросов могуг быть использованы и для отделения газов с высокой плотностью, например, галогенидов тяжелых металлов. В то же время процессы охлаждения и конденсации, широко используемые для газоразделения, применяются и для укрупнения субмикронных конденсационных аэрозолей ( вымораживание поли-циклических ароматических углеводородов, коагуляция туманов). [c.162]

    Один из методов разрушения облаков и Туманов основан на коагуляции аэрозолей. Ее осуществляют распылением в аэрозоль гигроскопических веществ или твердого диоксида углерода, частицы которых становятся центрами конденсации или кристаллизации. Коагуляцию аэрозолей можно вызвать также воздействием на них ультразвука. Ультразвук ускоряет движение частиц аэрозоля и способствует соединению их в крупные агрегаты, которые затем легко отделяются в циклонах. [c.236]

    Обычно в отечественной и зарубежной литературе термины флокуляция и коалесценция используют, вкладывая в них несколько другой смысл. Первый употребляют как синоним понятия агрегация или коагуляция [279—282] под коалесценцией понимают слияние капелек в эмульсиях и туманах, а также объединение пузырьков газа в пенах [283]. Когда необходимо подчеркнуть отличие между агрегацией, характеризуемой непосредственным соприкосновением частиц, и агрегацией, протекающей при сохранении тонких жидких прослоек, разделяющих отдельные микрообъекты, говорят о ближней и дальней агрегации или коагуляции [284]. Здесь и в дальнейшем терминология авторов сохраняется. На возможность такой трактовки процессов коалесценции в дисперсных системах, содержащих твердые частицы, указывал Ребиндер [283], отмечая аналогию явлений собирательной рекристаллизации и слияния, приводящих в конечном итоге к исчезновению поверхности раздела фа>. Прим. ред.) [c.11]


    Аэрозоли находят широкое применение в промышленности, сельском хозяйстве и в быту. Туманы, получаемые механическим диспергированием, применяют для опыления, опрыскивания, увлажнения, создания защитных завес и т. д. Размер частиц в таких туманах составляет не менее 1,0—1,5 мкм, что является основной причиной их быстрого гравитационного осаждения и коагуляции. Наиболее стабильны туманы, получаемые при конденсации пересыщенных паров — метод, который нередко выступает в качестве необходимой стадии технологического процесса получения многих продуктов. Так, устойчивые конденсационные туманы образуются в производстве серной, хлороводородной и фосфорной кислот, в процессах хлорирования, сульфирования, гидрохлорирования, при термическом разложении некоторых солей, гидролизе ряда газов. Вследствие высокой дисперсности и часто сильной агрессивности дисперсных частиц разрушение таких туманов представляет весьма сложный и дорогостоящий процесс. [c.405]

    Аэрозоли возникают в результате диспергирования твердых тел и жидкостей (пыль, туман) конденсации частиц при горении топлив коагуляции малых частиц в атмосфере в более крупные гомогенного или гетерогенного образования ядер конденсации в условиях пересыщения реакций, происходящих на поверхности твердых частиц и приводящих к их росту реакций в капле воды (растворение SO2 и последующее окисление) разрушения крупных частиц и образования большого количества мелких частиц (например, испарение капелек в облаке приводит к увеличению общего числа частиц, способных стать ядрами конденсации). Большинство рассмотренных выше химических превращений оксидов серы, азота, галоидсодержащих соединений происходит на поверхности твердых частиц или капелек атмосферной влаги. Так, сульфат аммония, являясь одним из распространенных компонентов атмосферных аэрозолей, возникает при взаимодействии аммиака с ядрами серной кислоты, образующейся по реакциям (1-3). [c.17]

    В полидисперсных аэрозолях коагуляция может происходить также и другим путем Под влиянием гравитационных или центробежных сил крупные частицы движутся быстрее мелких, и тем самым увеличивается вероятность столкновения тех и других Коагуляция за счет разности скоростей оседания (именуемая иногда ортокинетической коагуляцией ) в высокодисперсных дымах с малым интервалом размеров частиц пренебрежимо мала но она может играть важную роль в природных облаках и туманах, где разница в скоростях оседания капель значительна [c.154]

    Можно привести пример о влиянии качества теплоносителей на энергосбережение. В производстве этилена на установках газоразделения используются холодильные циклы для создания необходимых температур и давлений теплоносителей. Работа компрессорного оборудования часто вызывает попадание масляной фазы в газовую среду. Образуется масляный аэрозоль (туман). Последующая коагуляция масла на поверхностях теплообменных аппаратов повышает термическое сопротивление стенок и снижает эффективность их работы. Кроме этого для очистки теплообменных поверхностей от масляной пленки несколько раз в год выполняются внеплановые остановы установки газоразделения, что ведет к сокращению выпуска этилена. Сепарация масляного тумана специальным аппаратом позволила исключить остановы и потери продукта, повысить эффективность теплообмена, что дает реальный экономический эффект около 200 тысяч евро в год. Сепаратор масляного тумана окупился затри месяца эксплуатации [7]. [c.95]

    Другая, не менее распространенная система, загрязняющая окружающее пространство, — аэрозоль, т. е. дым из труб, пыль или туман в производственных помещениях или шахтах. Аэрозоли представляют все возрастающую опасность для человека. Так, силикатная пыль является причиной одного из наиболее тяжелых профессиональных заболеваний — силикоза. Проблема разрушения и коагуляции аэрозолей — одна из наиболее важных в коллоидной науке. [c.93]

    В туманах частицы имеют сферическую форму, сохраняющуюся при коагуляции, так как капельки при этом сливаются [c.16]

    Ультразвуковой метод обработки газов и жидкостей [5.2, 5.55, 5.58]. Метод основан на воздействии ультразвуковых колебаний на системы Г — Т, Ж —Т, Ж1 — Жг, Г — Ж. Под действием ультразвука получают устойчивые эмульсии двух несмешивающих-ся жидкостей, измельчают твердые тела, повышая дисперсность частиц и устойчивость суспензий, диспергируют жидкость в газе с образованием тумана из частиц диаметром 0,5—5 мкм. В то же время воздействие звуковых колебаний на дисперсные системы (дымы, пыли, туман и т. д.) при определенных условиях приводит к быстрой коагуляции аэрозолей и взвесей с образованием осадков. Ультразвуковые волны при прохождении через жидкость способствуют ее дегазации и ускоряют диффузионные процессы. В 3—4 раза ускоряются сорбционные процессы при ионообменной [c.483]


    Разумно было бы заключить, что в присутствии посторонних паров скорость коагуляции изменяется лишь в аэрозолях, состоящих из твердых частиц, и что причина изменения состоит не в увеличении или уменьшении эффективности столкновения, а в изменении формы образующихся агрегатов. С другой стороны, некоторые опыты как будто показывают, что скорость агрегации аэрозолей, частицы которых имеют значительное давление пара, например водяных туманов, увеличивается в присутствии веществ, снижающих давление пара, в частности хлорида кальция. Механизм этого эффекта был исследован на микроскопических и макроскопических системах 2 . Данные по рассеянию света и скорости седиментации аэрозолей, а также электронные микрофотографии частиц показывают, что некоторые пары оказывают специфическое влияние на скорость агрегации некоторых аэрозолей. [c.158]

    Существуют две основные группы методов борьбы с дымами и туманами электрические методы, ускоряющие коагуляцию частиц, и механические, отделяющие частицы от газообразной среды. Первая группа методов сводится обычно к электроосаждению. Они основаны на электрофорезе — движении заряженных частиц в электрическом поле. Но скорость этого движения пропорциональна заряду частиц, а он в обычных аэрозолях невелик. [c.150]

    Из результатов проведенных опытов следует , что по мере поглощения энергии излучения образуется туман, уменьшающий интенсивность проходящего света. После прекращения облучения в результате коагуляции и осаждения капель интенсивность проходящего света возрастает. [c.259]

    Механизм образования тумана в газовой смеси, освобожденной от ионов и ядер конденсации (гомогенная конденсация), состоит в том, что по мере увеличения пересыщения возрастает скорость образования зародышей. Возникнув, такие зародыши увеличиваются до размеров капель тумана за счет конденсационного роста и коагуляции. Когда размер и концентрация капель становятся достаточно велики (при этом появляется заметный оптический эффект), мы наблюдаем туман. [c.55]

    При невысокой численной концентрации (при Л/< 10 см ), когда коагуляция не оказывает существенного влияния на величину капель, значительное увеличение их радиуса (достигаемое главным образом за счет конденсационного роста) может произойти при достаточно длительном пребывании зародышей (а затем и капель) в пересыщенном паре. К концу процесса формирования зародышей выделяется полидисперсный туман, поскольку в результате конденсационного роста радиус капель, образовавшихся в начале процесса, становится больше радиуса капель (зародышей), образовавшихся в конце этого процесса. Однако в дальнейшем, когда образование зародышей прекращается, а пересыщение пара сохраняется (5кр>5>1), полидисперсность тумана снижается тем в большей степени, чем продолжительнее время т, в течение которого капли находятся в пересыщенном паре (см. рис. 5.13). [c.262]

    На протяжении первого этапа протекают одновременно три процесса — образование зародышей, их конденсационный рост и коагуляция. При этом скорость образования зародышей с течением времени увеличивается. К концу первого этапа получается полидисперсный туман, так как радиус капель, образовавшихся в начале этапа в результате конденсационного роста, становится больше радиуса капель, образовавшихся в конце этапа. [c.262]

    В результате пересыщение пара постепенно повышается, и пар конденсируется на ядрах конденсации. По выходе из конденсатора туман разбавляется в смесителе 8 фильтрованным воздухом для устранения коагуляции. Изменением скорости потоков и температуры в термостате регулируют конечный радиус получаемых капель. [c.281]

    Для слабо заряженного биполярного аэрозоля увеличение коагуляции вследствие притяжения компенсируется уменьшением, вызванным отталкиванием. С другой стороны, для очень сильно заряженного биполярного аэрозоля возрастание коагуляции благодаря притяжению значительно превосходит ее ут еньшение вследствие отталкивания, что приводит к суммарному увеличению скорости коагуляции. Хайди и Брок [132] использовали модель Дебая — Хюккеля для анализа электростатических эффектов при коагуляции. Они показали, что для биполярных аэрозолей, когда электростатическое отталкивание сильное, константы коагуляции будут возрастать, тогда как высокозаряженные униполярные аэрозоли будут иметь уменьшенные константы коагуляции. Хайди и Брок предостерегают, что эти оценки являются приближенными, так как поляризация в электрическом поле может значительно изменить эффект зарядки при коагуляции. Фукс [135] указал, что коагуляция туманов увеличивается только в очень сильных электрических полях (превосходящих 200 В/см). В результате поляризации твердых частиц в электрическом поле увеличивается образование структур в виде цепочек. [c.829]

    Согласно другой теории ультразвуковая коагуляция обусловли- вается притяжением между частицами, движущимися в ультра- звуковом поле. Такое притяжение может возникнуть между частицами аэрозоля, если они совершают быстрое, параллельное и одинаково направленное движение. Нужны всего секунды для того чтобы туман, движущийся в ультразвуковом поле, скоагулировал на 90%. Полученные в результате коагуляции кр упные капли легко отделяются от газа в обычных циклонах. [c.362]

    Ультразвук применяют для разрушения сернокислотных и дру гих производственных туманов. В настоящее время для осаждения, аэрозолей ультразвуком разработаны промышленные установки производительностью до ГООО м мин. К сожалению, в ультразву ковом поле остается нескоагулировавшей обычно самая высокодисперсная часть тумана. Другой недостаток коагуляции аэрозолей с помощью ультразвука заключается в том, что ультразвук малоэффективен при разрушении сильно разбавленных систем. [c.362]

    Существуют две основные группы методов борьбы с дымами и туманами электрические методы, ускоряющие коагуляцию частиц, и механические, отделяющие частицы от газообразной среды. Первая группа методов сводится обычно к электроосаж- [c.149]

    При прохождении газожидкостной смеси через УПК (дроссель, теплообменник или турбодетандер) в результате понижения температуры и давления в потоке образуются мелкие капли (туман), размер которых намного меньше минимального радиуса капель, характерного для сепаратора. Если УПК поместить у входа в сепаратор, то образующиеся капли не уловятся сепаратором. Для эффективного осаждения их необходимо укрупнить. Укрупнение капель начинается непосредственно в УПК. Однако малое время пребывания в УПК не позволяет им укрупниться до нужного размера и дальнейшее укрупнение капель происходит в трубопроводе, соединяющем УПК и сепаратор. Ранее было показано, что основным механизмом укрупнения капель в трубопроводе является их коагуляция в турбулентном потоке газа. Для этого им необходимо достаточно большое время, которое [c.485]

    Электромагнитные преобразователи могут быть основаны также на принципе перемещения в постоянном магнитном поле проводника, на концы которого подается переменная разность потенциалов. Этот припцип может быть использован для генерирования колебаний ультразвукового диапазона частот. Преобразователь Клэра (рис. 29), предназначенный для ускорения коагуляции дымов и туманов, генерирует акустические колебания частотой порядка 20 кгц [78]. Направляющее кольцо 5 вибрирующего цилиндра 1 входит в радиальный зазор электромагнита 7. Ток в направляющем кольце, являющемся витком вторичной обмотки трансформатора, индуктируется возбуждающей катушкой 8, которая служит первичной обмоткой трансформатора. [c.43]

    Экспериментальные значения констант коагуляции /( на 20—25% выше рассчитанных по исправленному уравнению Смолуховского для скорости коагуляции монодисперсного аэрозоля К=4кТ(I + А1/г)/Зг . Это отклонение обычно приписывают влиянию полидисперсности, поскольку полидисперсная система должна коагулировать быстрее монодисперсной. Однако для туманов масла, трикрезилфосфата и серной кислоты увеличение скорости коагуляции за счет полидисперсности составляет лишь несколько процентов (самое большее 10%) Предполагается, что оставшаяся разница обусловлена ван-дер-ваальсовыми силами, благодаря которым радиус сферы действия каждой аэрозольной частицы возрастает. Хотя, по мнению Бредли и Бейшера между частицами дыма при агрегации должны действовать значительные силы сцепления, для коагуляции обычно принимают, что эффективный радиус частицы равен ее геометрическому радиусу, т. е. коагуляция происходит лишь при непосредственном соприкосновении частиц в результате броуновского движения. Влияние ван-дер-ваальсовых сил было рассчитано следующим образом з. Согласно общей теории этих сил, энергия взаимодействия беско  [c.158]

    Результаты опытов по выяснению влияния униполярной электрической зарядки на скорость коагуляции аэрозоля не достаточно ясны. В дымах, заряженных одним знаком посредством униполярного электростатического разряда, частицы быстро исчезают 2. Авторы предположили, что это может быть либо результатом притяжения частиц стенками дымовой камеры, на которых индуцировался заряд противоположного знака, либо следствием индукционных сил, которые в случае большой разницы в зарядах и размерах частиц могли бы вызвать притяжение (а не отталкивание) их друг к другу на близких расстояниях. При более Низком потенциале зарядки были получены слабее заряженные, но более униполярные дымы, и не было обнаружено разницы в стабильности униполярно заряженных и нейтральных аэрозолей Ч Усовершенствовав метод униполярной зарядки аэрозолей в коронном разряде, Фукс и Петрянов получили высоко заряженные аэрозоли с более высокой степенью униполярности, чем в опытах Уайтлоу-Грея и Паттерсона и подтвердили вывод последних, что униполярно заряженные аэрозоли значительно менее устойчивы, чем незаряженные. Некоторые данные о скорости убывания счетной концентрации униполярно заряженных масляных туманов показаны на рис. 5.9. Обнаруженное быстрое уменьшение числа частиц фактически является результатом их взаимного отталкивания под влиянием униполярных зарядов. Скорость уменьшения концентрации частиц [c.163]

    П. я., к-рые могут быть названы физическими, связаны с избытком свободной энергии в поверхностном слое, с наличием поверхностного натяжения вследствие некомпенсированности молекулярных сил сцепления, действующих на молекулы поверхностного слоя. К этой группе П. я. относятся образование равновесных форм кристаллов при их росте, соответствующих минимуму свободной энергии при постоянстве объема шарообразная форма капель и пузырей, отвечающая условию минимума поверхности нри заданном объеме коалесценция — слияние капелек или пузырьков в эмульсиях, туманах и пенах коагуляция — агрегирование частиц дисперсной фазы и структурообразование в дисперсных системах, т. е. сцепление частиц в пространственные структуры — каркасы смачивание и прилипание, всегда связанные с уменьшением поверхностной энергии. Сложные формы жидких поверхностей раздела, возникающие нри совместном действии молекулярных сил (иоверх-ностпого натяжения и смачивания) и внешних сил (силы тяжести), рассматриваются теорией капиллярности (см. Капиллярные явления), связанной с общей теорией П. я. Из условия минимума свободной поверхностной энергии кристалла, различные грани к-рого (совместимые с данным типом кристаллич. решетки) имеют разные поверхностные натяжения, выводятся математически все возможные формы кристаллич. многогранников, изучаемые в кристаллографии. [c.51]

    Начальной стадией образования тумана является возникновение зародышей, радиус которых составляет 10 —10" см в подавляющем большинстве случаев туман состоит из более крупных капель. Размер капель увеличивается в результате конденсационного роста капель и коагуляции. Поскольку скорость коагуляции существенно зависит от численной концентрации тумана [урав нение (1.84)], из приведенных данных следует, что основная задача при регулировании дисперсности тумана состоит в том, чтобы обеспечить определенное соотношение между скоростью образования зародышей, их конденсационным ростом и коагулядией. [c.260]


Смотреть страницы где упоминается термин Коагуляция в туманах: [c.236]    [c.353]    [c.555]    [c.13]    [c.34]    [c.158]    [c.163]    [c.221]    [c.182]    [c.13]    [c.34]    [c.154]    [c.322]   
Аэрозоли-пыли, дымы и туманы (1972) -- [ c.385 ]

Аэрозоли-пыли, дымы и туманы (1964) -- [ c.385 ]

Аэрозоли - пыли, дымы и туманы Изд.2 (1972) -- [ c.385 ]




ПОИСК





Смотрите так же термины и статьи:

Коагуляция

Монодисперсный туман константа коагуляции

Туман

Туман тумана



© 2024 chem21.info Реклама на сайте