Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Бактериофаги инфекция

    Описанный наиболее типичный путь развития вирусной инфекции называют литическим. В некоторых случаях наряду с литическим типом инфекции возможен другой путь — лизогенный, при котором ДНК вируса встраивается в хромосому хозяина и на протяжении многих циклов деления клеток хозяина размножается в составе хозяйской ДНК. В некоторых специальных условиях, например при УФ-облучении или действии проникающей радиации, ДНК вируса может выйти из состава хромосомной ДНК и переключиться на литический путь развития. Наиболее детально лизогенный путь развития изучен на примере бактериофага А, паразитирующего на клетках Е.соИ. [c.112]


    Так как техника обнаружения ряда бактериофагов, например дизентерийных и брюшно-тифозных, более проста и надежна, чем методика выделения соответствующих бактерий, то использование бактериофага в качестве санитарно-показательного микроорганизма имеет большие перспективы. Особенно целесообразным представляется использование бактериофагов как показателей фекального загрязнения воды в тех случаях, когда имеется опасность передачи через воду вирусных инфекций. Вирусы-возбудители полиомиелита, эпидемического гепатита и некоторых других заболеваний, передающихся через воду, выживают в воде и почве дольше, чем кишечная палочка. Поэтому, когда появляется опасность возникновения подобных вирусных эпидемий, бактериофаги, которые по своей устойчивости более близки к вирусам, могут быть использованы как санитарно-показательные микроорганизмы, имеющие преимущество перед кишечной палочкой. [c.170]

    В Америке Дельбрюк собрал вокруг себя горстку энтузиастов, заразившихся его идеей изучения природы наследственности на бактериофагах. Так возникла фаговая группа . Шли годы, и участники фаговой группы все больше и больше узнавали о том, как протекает фаговая инфекция и как процесс воспроизведения фагового потомства зависит от внешних условий и т. д. Было проведено много замечательных исследований, в особенности в области изучения мутационного процесса у бактерий и бактериофагов. Именно за работы этого периода много лет спустя Дельбрюк был удостоен Нобелевской премии. Но все эти исследования, казалось, даже не приближали к решению основной проблемы. [c.11]

    Подобный процесс происходит спонтанно в любой лизогенной культуре, но не в очень больших количествах с вероятностью порядка 10 или меньше на поколение. Выход вегетативного фага из клетки не влечет за собой никакой катастрофы для остальных клеток, так как лизогенная культура не подвержена инфекции фагом она, как принято выражаться, имунна. Конечно, частицы бактериофага адсорбируются на оболочке лизогенных клеток и даже производят инъекцию ДНК, однако процесс не сопровождается заболеванием клеток, т. е. развитием в них новых частиц фага. В некоторых случаях лизогенная культура может дать начало вегетативной форме фага под воздействием ультрафиолетового света, рентгеновских лучей или химических мутагенов. Это явление носит название индукции лизогенной культуры. Достаточной является сравнительно небольшая доза ультрафиолетового света (например, доза даюш ая 20% гибели клеток), чтобы практически во всех (более 90% всех выживших клеток) К12 (л) произошла индукция профага до состояния вегетативного фага. [c.382]


    В случае Т-четных бактериофагов было показано, что в наиболее благоприятных условиях отношение числа вирусных частиц к числу инфекционных единиц колеблется между 1 и 2 [300]. Для вирусов животных и растений, однако, указанное отношение составляет от 10 до 10 . Эти данные можно было бы объяснить тем (а часто их так и оценивают), что вирусные частицы в большинстве своем не инфекционны. Однако более вероятная причина кроется, по-видимому, в том, что все типичные вирусные частицы потенциально инфекционны, но большая их часть при этом оказывается неспособной вызывать инфекцию в условиях опыта. Более низкая эффективность заражения, наблюдаемая в опытах с вирусами растений и животных, объясняется, возможно, следующим обстоятельством. Как уже упоминалось выше, в то время как у многих колифагов процесс проникновения в клетку облегчается наличием специального органа, у вирусов животных и растений проникновение в клетку осуществляется только через определенные рецепторные участки или раны клетки. [c.22]

    Известно два случая, когда выключение экспрессии одних генов и включение других связано с заменой сиг-ма-фактора. Одно из этих явлений-спорообразование, или споруляция-состоит в резких морфологических изменениях, переводящих бактерии в покоящуюся форму (спору), способную переживать неблагоприятные условия. Другое явление обнаруживается при литической инфекции клетки бактериофагом. Когда инфекция развивается по этому пути, то в конце концов в результате размножения фага клетка погибает. Во всех наиболее простых случаях при развитии фага происходит переключение транскрипции. Однако известен только один хорошо изученный случай, когда изменения транскрипционной специфичности обусловлены заменой клеточного сигма-фактора на фаговый. (Это обнаружено в бактериях, способных образовывать споры.) Чаще изменения происходят под действием других механизмов-обычно с использованием дополнительных факторов транскрипции. Создается впечатление, что регуляторный механизм, основанный на возникновении изменений в самой РНК-полимеразе, неохотно используется клеткой, и только в качестве последней возможности. Вероятно, что способность использовать заменяемые друг друга сигма-факторы эволюционно возникла только у очень ограниченного круга бактерий. [c.157]

    Бактериофаг X оказался настоящей сокровищницей систем генетической регуляции, изучение которых позволило заметно расширить и углубить наши представления о механизмах генетической регуляции у прокариот. В процессе литического развития гены фага X (см. гл. 7) регулируются таким образом, чтобы обеспечивать контролируемую репликацию ДНК, рекомбинацию, синтез структурных белков и сборку частиц потомства фага. В то же время лизогенам по фагу X присущ иной способ экспрессии генов. В лизогенных бактериях репрессированы все гены профага, используемые при литическом развитии, и экспрессируется только один ген, обозначаемый с1, который контролирует репрессию генов профага. Экспрессия гена с1 в лизогенах обеспечивает также иммунитет клетки к повторной инфекции другим фагом X. [c.183]

    Вирусы впервые были описаны как болезнетворные агенты, которые размножаются только в клетках и имеют настолько малые размеры, что способны проходить через ультратонкие фильтры, задерживающие самые мелкие бактерии До появления электронного микроскопа природа их оставалась неясной, хотя уже тогда высказывалось мнение, что это, возможно, просто гены, которые приобрели способность переходить из одной клетки в другую. В 1930-х годах использование ультрацентрифуги сделало возможным отделение вирусов от компонентов клетки-хозяина. В результате уже в начале 1940-х годов стало более или менее ясно, что все вирусы содержат нуклеиновые кислоты. Это укрепило исследователей в мысли, что вирусы и генетический материал выполняют сходные функции. Подтверждение такой точки зрения было получено при изучении вирусов бактерий (бактериофагов). В 1952 г. удалось показать, что в клетку бактерии-хозяина проникает одна только ДНК бактериофага (без его белка) и что именно она инициирует здесь процесс репликации, приводящий в конечном счете к появлению в инфицированной клетке нескольких сотен дочерних вирусных частиц. Таким образом, вирусы можно рассматривать как генетические элементы одетые в защитную оболочку и способные переходить из одной клетки в другую. Размножение вирусов само по себе часто оказывается летальным для клетки, в которой оно происходит. Многие вирусы разрушают инфицированную клетку (вызывают ее лизис), что и дает возможность потомству вируса переходить в соседние клетки. Клинические симптомы вирусной инфекции во многих случаях отражают именно эту цитолитическую способность вируса Высыпание при [c.314]

    Бактериофаги используются в терапии раневых, ожоговых и некоторых кишечных инфекций эти фаги также получают в промышленных масштабах. [c.215]


    Для лечения и профилактики ряда инфекций наряду с другими препаратами применяют вирусы бактерий — бактериофаги, обладающие высокой специфичностью к патогенным и условно-патогенным бактериям. Избирательность их действия значительно выще, чем антибиотиков и других химиотерапевтических средств. Бактериофаги не оказывают влияния иа нормальную микрофлору. Они сами фактически относятся к нормальной микрофлоре. Естественной средой обитания многих фагов служат фекалии, речные и сточные воды, куда они попадают вместе с фекалиями и где играют роль одного из факторов самоочищения внешней среды. [c.577]

    Нитевидные бактериофаги не вызывают лизиса бактериальных клеток во время инфекции, но постоянно выходят из них через пору диаметром 8 нм во внешней мембране клетки. Размер поры обеспечивает прохождение одной фаговой частицы. Во время переноса через внутреннюю бактериальную мембрану одноцепочечная геномная ДНК покрывается белками оболочки, которые локализованы во внутренней мембране. При этом их N-концы экспонированы в периплазматическое пространство, а С-концы контактируют с цитоплазмой. Белки g8p и g3p первоначально синтезируются в виде предшественников, содержащих N-концевую сигнальную последовательность, которая удаляется после их внедрения в мембрану. [c.335]

    После очистки соответственно кристаллизации вирусы сохраняют в значительной степени способность передавать болезнь. Для этого достаточно небольшого числа молекул вируса. В случае вируса оспы и некоторых бактериофагов инфекция передается, вероятно, лишь одной молекулой вируса. Вирусы размножаются только в живых клетках содержащего их организма и не развиваются на культуральных средах, подобных применяемым для размножения бактерий, или в мертвых тканях. После того как частица впруса внедрится в клетку организма, белок этой клетки постепенно исчезает, и вместо него размножается вирус. В случае мозаики табака было найдено, что через четыре дня после прививки количество вируса превышает приблизительно в миллион раз привитое количество. Разумеется, вирус потребляет не только белок клетки-хозяина, но и энергию, вырабатываемую в результате определенных процессов в этой клетке для построения своего собственного вещества. Таким образом, вирусы ведут себя как рудиментарные паразиты с высокой способностью к воспроизведению, которые, однако, не в состоянии осуществлять метаболические сопровождающиеся производством энергии процессы, необходимые для эндэргонных синтезов, связанных с этим воспроизведением. Ввиду того что вирусы состоят главным образом из нуклеопротеидов, этот процесс воспроизведения выявляет важную роль нуклеопротеидов в синтезе белков. [c.456]

    Инфицирование клетки Е. соИ бактериофагом происходит следующим путем фаг впрыскивает свою ДНК через клеточную стенку в цитоплазму. Приблизительно через 20 мин после этого клетка лопается, и из нее выходит около 100 полностью готовых копий исходной вирусной частицы. Такая высокая скорость размножения позволяет проводить в пробирке в течение 20 мин генетические эксперименты, для которых потребовалось бы все население земного шара, если бы эти опыты проводились на людях. Главные принципы, лежащие в основе этого метода, были ясно изложены Бензером [130], который впервые составил карту тонкого строения гена. Частицы бактериофагов, подобно бактериям, можно посеять в чашке с агаром. Отличие заключается лишь в том, что агар должен содержать однородную суспензию бактерий, чувствительных к вирусу. В какой бы участок чашки ни попали вирусные частицы, они заражают какую-либо бактерию. Вокоре инфекция распространяется на соседние бактерии и в результате образуется стерильное пятно (рис. 15-20). Число основных вирусных частиц, содержащихся в суспензии, можно легко определить, сосчитав число стерильных пятен, образовавшихся в результате посева. [c.248]

    Триптофансинтетаза (стр. 141) состоит из двух субъединиц А и В (или а и ), первая из которых содержит всего лишь 268 аминокислот. Тонкую структуру гена А удалось картировать следующим образом. Было выделено большое число мутантных бактерий, неспособных расти на среде, не содержаш,ей триптофана (ауксотрофы по триптофану). Генетические скрещивания проводились с помощью специального трансдуцирующего бактериофага Pike [134]. В процессе размножения в чувствительных к ним бактериях трансдуцирующие бактериофаги иногда включают в собственную ДНК часть бактериальной хромосомы. В дальнейшем, когда такой фаг заражает другие бактерии, часть его генетической информации может переноситься в результате рекомбинации 3 хромосомы бактерий, переживших инфекцию. Используя серии мутантов с делециями аналогично тому, как это было сделано при картировании гена гЛ, удалось разделить ген А на ряд участков, а исследование частоты рекомбинаций позволило осуществить точное картирование. [c.251]

    Известны три состояния, в которых могут находиться недефектные фаги и три типа влияния фаговой инфекции на судьбу зараженной клетки К числу первых относят свободное состояние, вегетацию и состояние профага (для так называемых умеренных фагов), к числу вторых — гибель зараженной клетки (фаги здесь называют истинно вирулентными), переход клетки, несущей умеренный фаг (профаг), на путь лизогенного развития, или, в случае индуцибельности профага и воздействия индуцирующими факторами (УФЛ, некоторые мутагены и др ) — на путь лизиса, наконец, при третьем типе влияния фаговой инфекции не наблюдается каких-либо заметных отклонений в характере поведения зараженных клеток — гибели их не происходит, фаги при этом могут высвобождаться из клеток или постоянно реплицироваться, находясь внутри их и слегка замедляя скорость размножения клеток Учитывая сказанное, следует подчеркнуть, что бактериофаги имеют большое значение в биотехнологии еще и потому, что они могут выступать ощутимыми вредителями в микробиологических производствах, базирующихся на эксплуатации прокариотических организмов [c.85]

    Интерес к индикаторному значению бактериофага существенно возрос в последние годы в связи с выявлением роли водного фактора в распространении вирусных инфекций, а такл< е в связи с установлением большей устойчивости кишечных вирусов к ряду физических и химических факторов окружающей среды и их более длительной по сравнению с санитарно-показательными бактериями выживаемостью в воде. Отмечена большая устойчн- [c.46]

    Потом наступила очередь второго. Когда кишечная палочка заражается бактериофагом Т7, то сначала часть генов фаговой ДНК считывается хозяйской РНК-полимеразой. Но потом появляется совсем другая, фаговая РНК-полимераза, которая начинает считывать остальные, так называемые поздние , гены фаговой ДНК. Так в зараженной клетке происходит процесс перехода власти от законного хозяина, ДНК Е. oli, к вторгшемуся паразиту — фаговой ДНК. Заметим, между прочим, что факт переключения синтеза молекул РНК с ранних на поздние при фаговой инфекции был открыт нашим соотечественником Р. Б. Хесиным и его сотрудниками на рубеже 50-х и 60-х годов. [c.51]

    Антагонистические отношения между водорослями и бактериями обусловлены несколькими причинами. Это может быть конкуренция За источники азотного питания или то обстоятельство, что в процессе фотосинтеза водоросли подщелачивают среду до рН=9. Кроме того, многие водоросли (например, зеленые водоросли hlorella и S enedesmus) выделяют в среду вещества (метаболиты), обладающие бактерицидным действием. Установлено, что бактерицидное действие зеленых водорослей распространяется и на бактерии группы oli, и на возбудителей многих кишечных инфекций. В уничтожении патогенных бактерий принимают участие и бактериофаги. [c.190]

    Позже, в другом важном эксперименте, было получено независимое свидетельство в пользу того, что генетическую информацию несет ДНК, В 1952 г. Альфред Д. Херши и Марта Чейз в опытах с применением радиоактивных меток показали, что при инфекции бактериофагом Т2 [c.859]

    Бактериофаги против кишечных инфекций лечебнопрофилактические [c.710]

    Во время второй мировой войны как в СССР, так и в Германии были проведены опыты по использованию фагов для борьбы с инфекциями кишечника, и в Германии появился в продаже энтерофа-гос — препарат на основе бактериофага для борьбы с кишечными заболеваниями. Он содержал фаги возбудителей дизентерии, тифа, паратифа и энтерита. [c.214]

    Исследования умеренного бактериофага X внесли важный вклад в генетику. Фаг X содержит линейную молекулу ДНК длиной примерно 49 ООО п. п., то есть почти в 10 раз более длинную, чем геном фага фХ174. Фаг X представляет большой интерес, поскольку его генетические регуляторные механизмы довольно сложны. Когда чувствительную бактериальную клетку заражают умеренным бактериофагом, например фагом X (рис. 7.6), возможны два варианта дальнейших событий. В первом случае фаг реплицируется, производит множество потомков и разрушает клетку. Во втором случае фаговая инфекция приводит к лизоге-низации клетки, при этом фаг встраивается в бактериальную хромосому и превращается в пассивный участок бактериального генома. В таком состоянии фаг представляет собой профаг или провирус, реплицирующийся лишь как часть генома хозяина и в таком виде попадающий в дочерние клетки. При этом многие гены фага, потенциально летальные для клетки-хозяина, находятся в неактивном состоянии, или репрессированы. Однако иногда фаг может индуцироваться, переводя клетку на путь лизиса клетка погибает, высвобождая многочисленное потомство фага (рис. 7.6). Таким образом, фаг X служит моделью генетической системы вирус-хозяин. Изучение его функционирования послужило основой для современных представлений об опухолеродных вирусах млекопитающих, способных встраиваться в геном, таких как вирус полиомы и 8У40. В этой главе мы рассмотрим различные типы [c.204]

    В клетках Е. соИ могут содержаться и другие репликоны, способные существовать отдельно от бактериальной хромосомы. Они называются эписомами, и плазмидами, и представляют собой кольцевые молекулы ДНК различных размеров от 10 н.п. до почти трети величины самой бактериальной хромосомы. Одна из наиболее интересных и тщательно изученных эписом получила наименование F-фактора (фактора фертильности). F-фактор определяет половой процесс у Е. соН. Эписома-это генетический элемент, который может существовать либо в форме репли-кона отдельно от бактериальной хромосомы, либо встраиваться в бактериальную хромосому и составлять при этом часть репликона бактерии. Эписомой является и бактериофаг X, способный существовать как вне клетки в форме фага, так и внутри бактериальных клеток, либо в качестве отдельного репликона (при литической инфекции), либо в форме профага, составляя часть бактериального репликона. В противоположность эписомам, плазмиды не встраиваются в другие репликоны, а всегда существуют в форме свободных (автономных) репликонов. Умеренный фаг Р1, находясь в состоянии профага, представляет собой плазмиду, существующую отдельно от бактериального репликона. Однако, больщинство плазмид не покидают пределов клетки и не образуют внеклеточных форм. [c.231]

    Бактериофаги, способные включаться в бактериальные хромосомы, называются лизогенизируюгцими бактериофагами. Наиболее полно изучен среди них бактериофаг лямбда (> ), о ферменте которого, лямбда-интегразе, мы уже говорили. Когда бактериофаг X заражает подходящую клетку Е. соИ, он обычно размножается в ней и образует несколько сотен дочерних фаговых частиц, которые выходят наружу в момент лизиса клетки это так называемый литический путь инфекции. Гораздо реже линейные инфицирующие молекулы ДНК замыкаются в кольцо и включаются в кольцевую хромосому бактерии-хозяина путем сайт-специфической рекомбинации (см. разд. 5.4.7). По заверщении такой интеграции образовавшаяся лизогенная бактерия, несущая хромосому бактериофага X в виде профага, размножается, как обычно, до тех пор, пока на нее не воздействует какой-нибудь повреждающий внешний [c.319]

    Бактериофаги, способные вызвать продуктивную инфекцию клеток, т. е. инфекцию, завершающуюся образованием жизнеспособного потомства, определяют как недефектные. Для всех неде-фегп ных фагов свойственно два состояния состояние внеклеточного, или свободного, фага (иногда его называют также зрелым [c.168]

    Состояние носительства в отличие от лизогенного состояния свойственно не каждой отдельной клетке популяции, а всей популяции инфицированных бактерий в целом. Конкретные причины, благодаря которым популяция бактерий может стать носителем, самые разные. Приведем несколько примеров. 1. Защита чувствительных бактерий слизистым материалом. Бактериофаг 0KZ Pseudotnonas aeruginosa вирулентный фаг и образует очень большой выход в расчете на одну чашку Петри со сливным лизисом. Одиако даже из зон лизиса с наивысшими концентрациями фага легко выделяются обычные чувствительные бактерии. Такое сосуществование чувствительных клеток и большого количества фага объясняется тем, что при лизисе клеток этим фагом образуется много вязкого слизистого материала. Слизь, обволакивая чувствительные клетки, защищает их от инфекции фагом и какое-то время они еще размножаются в таком слизевом мешочке. [c.183]

    Ведение ацетоно-бутилового брожения с применением чистой культуры бактерий в условиях стерильности сред и всего оборудования обусловлено опасностью инфекции. Наибольший ущерб наносят производству молочнокислые бактерии и бактериофаг, быстро и полностью подавляющие рост ацетоно-бутиловых бактерий. Главная причина попадания бактериофага в производство определяется тем, что он легко задерживается в трещинах сварных швов ферментаторов, трубопроводах и других плохо прогреваемых и порой незаметных участках оборудования. Кроме возможного устранения таких участков наиболее эффективной мерой борьбы с бактериофагом является стерилизация при 120 °С не менее 20 мин. В результате внедрения способа непрерывного брожения в ацетоио-бутиловом производстве разработан комплекс мероприятий, позволяющих значительно улучшить условия стерильности и сократить случаи инфицирования в процессе брожения. [c.476]

    Феномен бактериофагии впервые наблюдал в 1898 г. Н. Ф. Гамалея. Однако выделен такой литический агент был лишь в 1917 г. д Эреллем. Это был бактериофаг, специфичный для палочки дизентерии Григорьева—Шига. В 30—40-х годах бактериофаги заняли заслуженное место среди других лечебно-профилактических препаратов. Большую группу среди них составляют бактериофаги против кишечных инфекций дизентерийный, брюшнотифозный, сальмонеллезиый групп АВСДЕ, коли-протейный. Широкое распространение антибиотикорезистентных форм бак- [c.577]

    Вирусы бактерий (фаги), или бактериофаги, широко распространены в окружающей среде — водоемах, почве. Фаги кишечных бактерий — кишечной палочки, шигелл, сальмонелл — могут быть выделены из сточных вод и испражнений. Стафилофаги обнаруживаются в слизи из носоглотки, на коже и в раневом отделяемом, фаги клостридий анаэробной раневой инфекции —в раневом отделяемом, почве. Наличие фага в среде указывает на присутствие чувствительных к нему бактерий. [c.63]

    Общая трансдукция оказалась следствием включения фрагментов ДНК Е. ali, зараженной фагом Р1, в инфекционные частицы бактериофага. Причем такие частицы вообще не содержат или содержат очень мало фаговой ДНК. Вследствие этого трансдуктан-ты, возникающие при множественности инфекции, равной 1 (одна частица на одну клетку), оказываются нелизогенными и не обладают иммунитетом к фагу Р1. Дефектность трансдуцирующих частиц Р1 подтверждает и то, что трансдукцию могут осуществлять даже вирулентные мутанты Р1. Это показывает, что транс-дуцирующие частицы действительно не способны инициировать нормальный цикл развития фага. Иначе клетки, зараженные вирулентным мутантом фага Р1, должны были бы погибнуть. [c.210]

    В соответствии с этими допущениями получается, что геномы Т-четных бактериофагов проходят около 5 циклов спаривания и рекомбинации. Однако вызывает сомнение универсальность и надежность исходных допущений. Так, множественность инфекции одной клетки (соотношение родительских частиц) может колебаться до 10 раз. Лизис индивидуальных зараженных клеток обнаруживает неравенство реципрокных классов рекомбинантов. [c.219]

    Стадия упаковки ДНК космид в фаговые частицы используется лишь для облегчения процесса введения рекомбинантных ДНК большого размера внутрь бактериальных клеток. Такой процесс имитирует проникновение фаговой хромосомы в бактерии во время фаговой инфекции. В случае космид сходство между их проникновением в бактериальные клетки и фаговой инфекцией на этом заканчивается. Однако сходство является более глубоким в случае векторов, называемых фазмидами. Фазмиды представляют собой векторные молекулы ДНК, которые содержат в себе генетические элементы плазмид и хромосом бактериофагов. Они могут обладать емкостью в отношении клонируемой ДНК, характерной для А,-векторов, и существовать в определенных условиях в бактериальных клетках в виде плазмиды или же упаковываться в фаговые частицы in vivo при изменении этих условий. [c.85]


Смотреть страницы где упоминается термин Бактериофаги инфекция: [c.115]    [c.402]    [c.135]    [c.147]    [c.315]    [c.471]    [c.17]    [c.135]    [c.316]    [c.149]    [c.197]    [c.197]    [c.377]    [c.181]    [c.203]    [c.334]   
Гены и геномы Т 2 (1998) -- [ c.238 ]




ПОИСК





Смотрите так же термины и статьи:

Инфекция



© 2025 chem21.info Реклама на сайте