Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Жидкостная хроматография гель-хроматография

    Принцип метода. Метод молекулярно-ситовой хроматографии (гель-хроматографии, гель-проникающей хроматографии или эксклюзионной хроматографии) —это вид твердо-жидкостной хроматографии, основанный на различной способности молекул веществ, отличающихся своими размерами, проникать внутрь заполненных растворителем пор неподвижной фазы и задерживаться там на различное время. Молекулы, имеющие большой размер, не проникают совсем или проникают только в часть пор носителя и вымываются из колонки раньше, чем маленькие молекулы, вследствие чего обеспечивается разделение по размеру молекул в растворе. [c.69]


    Советские исследователи предложили теорию единого механизма жидкостной хроматографии полимеров на жестких гелях, из которой следует, что изменением параметров взаимодействия в системе полимер — сорбент — растворитель можно переходить от адсорбционного механизма к эксклюзионному и наоборот [22]. В общем случае в эксклюзионной хроматографии нужно стремиться полностью подавить адсорбционные и другие побочные эффекты, так как они, особенно при исследовании молекулярномассового распределения (ММР) полимеров, могут существенно исказить результаты анализа. [c.42]

    ЖИДКОСТНАЯ ХРОМАТОГРАФИЯ, вид хроматографии, в к-рой подвижной фазой (элюентом) служит жидкость. Неподвижной фазой м. б. твердый сорбент, твердый носитель с нанесенной на его пов-сть жидкостью или гель. Различают колоночную Ж. х., в к-рой через колонку, заполненную неподвижной фазой, пропускают порцию разделяемой смеси в-в в потоке элюента (под давлением или под действием силы тяжести), и тонкослойную Ж. х. (см. Тонкослойная хроматография), в к-рой элюент перемещается под действием капиллярных сил по плоскому слою сорбента, нанесенного на стеклянную пластинку или металлич. [c.151]

    Газо-жидкостная хроматография. Если стационарная фаза в хроматографических системах должна быть либо твердой, либо жидкой, то подвижная фаза может быть и газообразной. Соответственно существуют две системы газовая хроматография на твердой фазе и газо-жидкостная хроматография (ранее эти методы называли газовой хроматографией).Метод газо-жидкостной хроматографии, который получил более широкое применение в органической химии, состоит в следующем. Образец вводят в нагреваемую систему, откуда вещества в виде паров выносятся инертным газом (подвижная фаза — азот, гелий, аргон) и проходят через стационарную жидкую фазу, покрывающую частицы твердого носителя кизельгур, целит) или располагающуюся в виде поверхностных пленок в капиллярах. Распределение происходит между жидкой и газовой фазами, и компоненты смеси передвигаются только за счет движения газовой фазы. При постоянных условиях опыта (носитель, стационарная фаза, скорость потока, давление и температура) время удержания, т. е. время от момента введения образца до выхода вещества из колонки, является характерным для каждого соединения. Площадь пика служит мерой количества вышедшего соединения. [c.23]


    Количество полярных и неполярных олигомеров может быть определено путем сочетания жидкостной и гель-хроматографии. [c.204]

    ЖИДКОСТНОЙ хроматографии, где используются поверхностно-пористые насадки, емкость опять мала, однако ее можно увеличить посредством более подходящего термодинамического распределения. В итоге емкость пика в гель-проникающей хроматографии ГПХ значительно меньше, чем в газовой или жидкостной хроматографии. [c.36]

    Методом газо-жидкостной хроматографии на хроматографе ХЛ-4 с детектором по теплопроводности показано отсутствие в синтезированных алкилсалицилатах (R = — Q) исходного метилсалицилата, салициловой кислоты и соответствующего спирта. Условия анализа температура колонки 180—245 °С диаметр колонки 3,6 мм длина 1 л носитель — целит 545, фракции 0,14 —12 мм неподвижная фаза — апиезон-Л4 (20% от веса носителя) газ-носитель — гелий (3—4 л/ ) , ток детектора 92 ма. [c.239]

    Для определения ММР жидких каучуков пригодны методы осадительной или элюентной хроматографии в различных вариантах. Весьма перспективным методом для исследования ММР полимеров с функциональными группами является гель-проникаю-щая хроматография с использованием жидкостных хроматографов различной конструкции [61]. [c.434]

    Жидкостная хроматография твердо-жидкостная жидко-жидкостная ионообменная хроматография гель-проникающая осадочная хроматография [c.186]

    Гель-хроматография (или гель-проникающая хроматография) является одним из вариантов жидкостной хроматографии, в котором растворенное вещество распределяется между свободным растворителем, окружающим гранулы геля, и растворителем, находящимся внутри гранул геля. Так как гель представляет собой набухшую структурированную систему, имеющую различные по размерам поры, то разделение в данном виде хроматографии зависит от соотношения размеров молекул разделяемых веществ и размеров пор геля. Помимо размеров молекул, которые можно принять пропорциональными молекулярным массам, существенную роль для гель-хроматографии играет форма молекул. Особенно большое значение этот фактор имеет для растворов полимеров, в которых при одной и той же молекулярной массе молекулы могут принимать различную форму (сферическую или другую произвольную) в соответствии с их конформацией и вследствие этого по-разному вести себя в колонке. Дальнейшие рассуждения справедливы для молекул, имеющих сферическую форму. [c.237]

    Хроматографическое разделение смеси веществ в рамках ее жидкостно-жидкостного варианта можно проводить не только на основе распределения компонентов анализируемой смеси между двумя несмешивающимися жидкостями, но и гель-хроматографией. В отличие от распределительной в гель-хроматографии подвижной и неподвижной фазами служит одна и та же жидкость — растворитель. При этом та часть жидкости, которая протекает вдоль слоя твердого носителя — зерен геля, выполняет функцию подвижной фазы и переносит компоненты разделяемой смеси вдоль колонки. Другая часть той же жидкости проникает в лоры зерен геля и выполняет функцию неподвижной фазы. [c.225]

    Однако в равной степени гель-хроматография применяется для разделения смеси вешеств средней молекулярной массы и даже низкомолекулярных соединений. В этом случае большое значение имеет то, что гель-хроматография позволяет вести разделение при комнатных температурах, что выгодно отличает ее от газо-жидкостной хроматографии, требующей нагревания для перевода анализируемых веществ в паровую фазу. [c.233]

    Отсутствие зернистого носителя дает возможность увеличить длину капиллярной колонки от нескольких десятков до нескольких сотен метров. Столь значительное удлинение колонки резко улучшает разделение анализируемой смеси и позволяет разделять вещества с очень близкими коэффициентами Генри, например орто-, мета- и лара-изомеры, изотопные соединения. Уменьшение диаметра колонки до 0,02 см позволяет работать с очень малыми дозами (порядка 0,1—10 мкг), т. е. капиллярная хроматография является тонким микрометодом анализа. При малых дозах и соответственно малых количествах жидкой фазы на единицу объема капиллярной колонки объемы удерживания и время удерживания компонентов значительно меньше, чем в газо-жидкостной хроматографии в заполненных колонках. Это намного сокращает время анализа, а также позволяет работать при более низких температурах. Объемная скорость потока газа-носителя очень мала, что очень важно при использовании дорогостоящих газов-носителей, таких, например, как гелий и аргон. Отметим, однако, что указанные достоинства в полной мере проявляются лишь при высокочувствительном и неинерционном детекторе. Наилучшим оказался пламенно-ионизационный детектор. [c.117]

    Для углубленного исследования состава конечных композиций присадок к смазочным маслам предложен ряд схем многоступенчатого препаратного разделения и анализа [533,543—545], в основу которых входяг препаративные методы — диализ, жидкостная адсорбционная хроматография, экстракция и гидролиз, а также препаративная и аналитическая тонкослойная хроматография, аналитическая газо-жидкостная и гель-хроматография, ИК-спектроскопия и т. д. Образцы композиций присадок неизвестного и по данным, качественного анализа сложного состава исследуют с применением [c.316]


    В настоящее время актуальной задачей является применение жидкостной хроматографии в химии лигнина. Хроматографические работы в этой области можно разделить на две основные группы. Первая группа, касается разделения производных лигнина различного молекулярного веса и анализа распределения их по молекулярным массам на декстрановом геле типа сефа-декса. Вторая группа посвящена разделению производных лигнина (главным образом сульфокислот лигнина) и использова- [c.48]

    В последние годы газо-жидкостная хроматография (называемая также парофазной хроматографией) открыла новые возможности анализа летучих веществ. О важности газо-жидкостной хроматографии (ГЖХ) можно судить на основании того факта, что с ее помощью легко проанализировать любые смеси соединений, структуры которых приведены на рис. 1-1 (большинство из них представляет собой низкокипящие жидкости). Обычный метод ГЖХ состоит в том, что несколько микролитров анализируемой жидкости вводится в испаритель и уносится потоком газа (обычно гелия) в длинную  [c.25]

    Жидкостная адсорбционная колоночная хроматография прочно завос вала ведущее место среди хроматографических методов анализа нефтепродуктов. Другие методы жидкостной хроматографии в значительно меньщей степени используют при исследовании нефтепродуктов. Связано это как с ограниченностью области применения этих методов, так и с трудностью надежной интерпретации получаемых результатов. Так, ионообменная и координационная хроматография могут быть использованы лищь для вьщеления и разделения неуглеводородных компонентов тяжельпх нефтепродуктов, обладающих свойствами кислот или оснований. Эксклюзионная (ЭХ), или гель-хроматография, несмотря на все увеличивающееся число попыток использования ее для исследования нефтепродуктов, пока еще не завоевала должной популярности, что объясняется в первую очередь трудностью надежной количественной интерпретации результатов разделения. Тонкослойную хроматографию в основном применяют как вспомогательный метод для подбора условий адсорбционного разделения в колонках или для качественной идентификации нефтепродуктов и вьщеленных из них фракций. Бумажная хроматография практически не нашла применения в анализе нефтепродуктов. [c.71]

    Особенностью развития хроматографии в последние 10—15 лет является не только усовершенствование известных ее вариантов, но и разработка принципиально новых, что позволило не только в значительной степени расширить круг исследуемых объектов, но и принципиально по-новому рассматривать хрома-тографию как научную дисциплину. Действительно, разработка таких вариантов, как хроматография в потоке в поле сил (однофазная хроматография), гель-хроматография, хромадистил-ляция и т. д., показывает, что по мере развития хроматографии некоторые элементы, которые считались ее непреложными атрибутами, перестают быть таковыми и остаются характерными лишь для частных случаев. Это относится даже к необходимости наличия двух фаз и к сорбционным явлениям. Все шире хроматографическому разделению подвергаются не только молекулы или ионы, но также неорганические и органические надмолекулярные структуры (вплоть до вирусов). В то же время традиционные варианты хроматографии ни в коей степени не утратили своих позиций. Прежде всего тот высокий теоретический, методический и аппаратурный уровень, которого достигла газовая хроматография, во многом послужил основой для развития жидкостной молекулярной хроматографии, которая за самое последнее время прошла огромный путь, превратившись Б высокоэффективный автоматизированный метод. То же в определенной степени можно сказать о тонкослойной хро-.матографии и ряде других вариантов. [c.9]

    В последние годы газо-жидкостная хроматография (называемая также парофазной хроматографией) открыла новые возможности анализа летучих веществ. О важности газо-жидкостной хроматографии (ГЖХ) можно судить на основании того факта, что с ее помощью легко проанализировать любые смеси соединений, структуры которых приведены на рис. 1-1 (большинство из них представляет собой низкокипящие жидкости). Обычный метод ГЖХ состоит в том, что несколько микролитров анализируемой жидкости вводится в испаритель и уносится потоком газа (обычно гелия) в длинную нагретую колонку, которая заполнена каким-либо пористым твердым веществом (например, измельченным огнеупорным кирпичом), пропитанным нелетучей жидкостью или маслом. Происходит распределение вещества между газом и жидкостью, причем небольшие различия в таком распределении для компонентов смеси могут быть резко увеличены вследствие большого числа повторных распределений, происходящих в длинной колонке. Детектирование обычно производится путем измерения изменений теплопроводности газа на выходе. Схематическое изображение аппаратуры для ГЖХ и типичный пример разделения с его помощью представлены на рис. 1-8 [c.30]

    Для анализа и идентификации летучих соединений германия все шире применяется газо-жидкостная хроматография [907]. Так, этим методом (с ошибкой, не превышающей 2%) определяли галогенсодержащие германийорганические соединения с температурами кипения от —25 до 280 °С на хроматографе СКВ ИОХ АН СССР. В качестве газа-носителя использовали гелий, осушенный на молекулярном сите 5А. Твердым носителем служил диатомитовый кирпич (размер фракций 0,25—0,5 мм), прокипяченный в соляной кислоте, высушенный при 700 °С и обработанный затем (СНз)20еС12. В качестве неподвижной фазы использовались 15%о ПФМС-4 или 3% ФС6 (фторсиликоновое масло) [908]. [c.322]

    Температура в утке поддерживалась термостатом с точностью 0,5° С. Для гидрирования использовался электролитический водород. Система перед опытом продувалась азотом и водородом, после чего в утку загружался в токе водорода катализатор в небольшом количестве растворителя. Катализатор насыщался водородом до прекращения изменения объема газа в бюретке. Загрузка циклогептатриена в опыте составляла 0,18 г (0,002 моля) катализатора 0,05-0,5 г, растворителя 20 мл. В качестве растворителя использовали н-гептан и этиловый спирт. Опыты проводили при температурах 20—30° С. Началом гидрирования считали момент включения электродвигателя, приводящего в движение качалку. Скорость поглощения замерялась по газовой бюретке. Анализ продуктов реакции производился методо.м газо-жидкостной хроматографии на хроматографе ХЛ-4 с детектором по теплопроводности. Стационарная фаза — триэти-ленгликольглутарат (20%) на кизельгуре, дл ина колонки 2 м, температура 100°С, газ-носитель гелий. Расчет хроматограмм выполнялся методом внутреннего стандарта. В качестве стандарта применялся н-диоксан. [c.94]

    Методика эксперимента. Опыты проводились в проточной системе над порциями катализатора по 5 мл. Углеводород пропускался над катализатором в токе водорода (скорость водорода на выходе из системы — 1 л1час) с практически постоянной объемной скоростью (0,2 час- ). Продолжительность каждого опыта составляла 1,5 часа катализат, собранный за первый час, отбрасывался, чтобы устранить влияние адсорбированного на катализаторе водорода и остатков катализата от предыдущего опыта катализат, собранный за последние 30 мин., подвергался анализу. Катализаты анализировались методом газо-жидкостной хроматографии на хроматографе СКВ ИОХ АН СССР в токе гелия при 80°С на че- [c.244]

    Чтобы различить разные формы ЖХ, обычно используют термины жидкостно-жидкостная хроматография , жидкостно-твердофазная хроматография и ионообменная хроматография (в тех случаях, когда природа неподвижной фазы или механизм процесса в неподвижной фазе неизвестны) [4]. Многие авторы использовали термины адсорбция и распределение в основном для жидкостной хроматографии соответственно жидкостно-твердофазного или жидкостно-жидкостного типа [5—7]. Однако, например, Де-терманн [8] и Олтгейт [9] описали механизм гель-хроматографии как жидкостно-жидкостное распределение растворенных молекул между жидкими фазами в порах и вне структуры геля, а также как пространственную эксклюзию и ограниченную диффузию молекул. Показано, что даже ионообменные смолы имеют адсорбционные свойства [10]. Адсорбционные и распределительные характеристики приведены в работе [11]. Применение ионообменной хроматографии в анализе загрязнений воды рассматривается в отдельной главе. [c.394]

    Монография, написанная коллективом авторов США, Канады н Швейцарии, под редакцией американского ученого Э. Хефтмана посвящена хроматографии — важнейшему современному аналитическому методу, который широко используется в научных исследованиях и в промышленности для контроля и управления технологическими процессами. В практическом аспекте рассматриваются все основные хроматографические методы жидкостная, плоскостная, газовая, ионообменная хроматографии, гель-хроматография, электрофорез. В части 1 рассмотрена хроматография аминокислот, олигопептидов, белков, липидов, терпенов и стероидов. [c.4]

    Теоретически любые растворимые вещества можно разде--лить с помощью подходящего метода жидкостной хроматографии. Ионообменная хроматография и электрофорез применимы в тех случаях, когда соединения имеют ионный характер или содержат ионогенные группы. Область применения гель-хроматографии ограничена соединениями с относительно высокой молекулярной массой (10 —10 дальтон). Адсорбционная и распределительная хроматография используются для разделения веществ со средней молекулярной массой (10 —10 дальтон),. и поэтому эти методы представляют особый интерес для хими-ков-органиков. Небольшие количества веществ можно разделить с помощью различных методов плоскостной хроматографии. Преимуществом последних является возможность анализа одновременно нескольких образцов, а также низкая стоимость, оборудования. Методы плоскостной хроматографии отличаются очень простым аппаратурным оформлением, однако требуют от экспериментатора определенных навыков. Разработано несколько вариантов препаративной плоскостной хроматографии и количественного анализа хроматограмм, однако они в известной степени несовершенны. Современная колоночная хроматография обладает теми же достоинствами и недостатками, что и газовая хроматография, однако в отличие от последней ее можно рекомендовать не только для анализа, но и для препаративного выделения веществ, особенно если эти вещества недостаточно термостойки, разлагаются на свету или легко окисляются. [c.31]

    Гель-хроматография является еще одним вариантом жидкостной хроматографии, в котором разделение компонентов осуществляется в соответствии с размером их молекул. Во всех хроматографических методах разделения вещества, особенно относящиеся к одному гомологическому эяду, элюируют в порядке возрастания молекулярной массы. При гель-хроматографии порядок выхода обратный небольшие молекулы попадают в сетку ге-.ля и удерживаются в ней, в то время как большие молекулы не могут проникнуть в полимерную сетку и вымываются из колонки первыми. [c.91]

    Гель-хроматография является одним из видов жидкостной хроматографии. При анализе этим методом растворенное вещество распседе-ляется между свободным растворителем и растворителем, находящимся во внутренних полостях пористых частиц наполнггтеля. Свободный растворитель является подвижной фазой, а пористые частицы, содержащие растворитель, образуют неподвижную фазу. [c.58]

    Основным прибором в газо-жидкостной хроматографии (ГЖХ) является колонка — металлическая или стеклянная трубка диаметром несколько миллиметров и длиной несколько метров. Колонка заполнена пористым материалом, пропитанным жидкостью (жидкой фазой). Исследуемое вещество в газообразном или в жидком состоянии вводят в доток инертного газа-носителя, обычно азота, гелия или водорода, и пропускают через колонку, нагретую до определенной температуры. Компоненты анализируемой смеси обладают различной растворимостью в жидкой фазе и поэтому выходят с другого конца трубки неодновременно. Многократно адсорбируясь и десорбируясь с поверхности носителя, они находятся в колонке строго определенное для каждого из них время. Этот период называют временем удерживания, и его регистрируют специальным детектором. [c.84]

    Задачи работы разделить высоко- и низкомолекулярные вещества методом жидкостной хроматографии в колонках с гелем спектрофотометрически определить белок и низкомолекулярную примесь. [c.235]


Смотреть страницы где упоминается термин Жидкостная хроматография гель-хроматография: [c.15]    [c.221]    [c.21]    [c.178]    [c.56]    [c.10]    [c.12]    [c.219]    [c.12]    [c.555]    [c.239]    [c.59]    [c.133]    [c.177]    [c.59]   
Аналитическая химия Том 2 (2004) -- [ c.265 , c.287 ]




ПОИСК





Смотрите так же термины и статьи:

Высокоскоростная жидкостная и гель-проникающая хроматография свободных спиртов

Гель-проникающая высокоэффективная жидкостная хроматография ВЖХ

Гель-хроматография

Жидкостная хроматография хроматографы

Хроматография жидкостная

Хроматография жидкостно-жидкостная

Хроматографы жидкостные



© 2025 chem21.info Реклама на сайте