Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Основы информационной теории

    Теория эвристического программирования исходит из предположения, что основу человеческого мышления составляют элементарные информационные процессы , организованные в сложную иерархическую структуру. Эта иерархическая структура обеспечивает определенный порядок выполнения элементарных информационных процессов (или элементарных информационных моделей) на каждом уровне и соподчинение моделей различных уровней между собой. В соответствии с этой концепцией в принципе любой вид умственной деятельности человека может быть формализован в виде некоторой динамической модели на ЭВМ, ибо ЭВМ позволяет выполнять простые логические преобразования, определенная последовательность которых дает любые правила перехода от одной элементарной информационной модели к другой. [c.160]


    Новая информационная технология, научной основой которой является теория ИИ, позволяет ЛПР — непрограммирующему конечному пользователю ЭВМ — непосредственно (без промежуточных помощников и без специальных знаний в области математики, программирования и вычислительной техники) обращаться с ЭВМ на ОЕЯ как при формулировании, так и при поиске решений НФЗ. Новая информационная технология, обеспечивающая переработку как разнообразных знаний ПО, выраженных на ОЕЯ, так и данных, превращает ЭВМ в удобного партнера для непрограммирующего конечного пользователя при поиске решений НФЗ, которые возникают в его профессиональной творческой деятельности. [c.20]

    Новая информационная технология, научной основой которой является теория ИИ, превращает ЭВМ в удобного партнера для непрограммирующего конечного пользователя при поиске решений НФЗ, возникающих в его профессиональной творческой деятельности. [c.27]

    Процессы управления в объектах самой различной природы неразрывно связаны со сбором, переработкой, передачей информации и выработкой на основе этого управляющих воздействий. Именно информационная сущность процессов управления позволила объединить их изучение в рамках единой науки — кибернетики, т. е. общей теории управления. Поэтому кибернетика определяется как наука об общих закономерностях процессов управления в живых существах, машинах и их комплексах. [c.394]

    В первой главе дан анализ современного состояния теории моделирования ФХС газов и жидкостей, рассмотрены известные методы их расчета. Применительно к нефтехимической технологии предложены и находят достаточно широкое применение приближенные модели ФХС, например, для расчетов давления насыщенных паров нефтяного сырья, такие формулы как Кокса, Ашворта, Максвелла и др., базирующиеся на информации только о температурах кипения фракций, что нельзя считать теоретически обоснованными. Рассмотрены теоретические основы учения о ФХС веществ и основы математических методов обработки информации, основные понятия информации и информационной энтропии, характеристики межмолекулярных взаимодействий в жидкостях и газах. [c.5]

    Графо-логическое описание процедур отыскания оптимального решения в виде блок-схем осуществления всех возможных исходов в поведении управляемой системы широко применяется в современной практике проектирования автоматизированного управления технологическими процессами и предприятиями. Разработка блок-схем решения логических задач дает возможность наиболее полного соблюдения всех условий оптимальности и варьирования элементов формальной и диалектической логики. В основе графо-логического обоснования блок-схем решения задач лежат положения теории графов и ее важнейшего раздела — сетевого планирования и управления. Механизм построения блок-схем достаточно отработан и основан на принятых в международном масштабе условных обозначениях, характеризующих отдельные процедуры логико-вычислительных операций по технологии обработки информации, например ввод и вывод данных, пропуск их через ЭВМ на печать и т. д. Кроме того, блок-схемы отражают последовательность и направленность информационных потоков, а также их взаимосвязи между собой. [c.153]


    Некоторые важные понятия статистической физики (в первую очередь, понятие статистической энтропии) тесно связаны с понятиями теории информации. Можно говорить о широком взаимном проникновении идей в рамках этих двух наук, которое приводит к их обогащению. При этом появляется возможность находить содержательную интерпретацию результатов одной науки на языке другой, а также строить методы решения соответствующих проблем одной науки, аналогичные тем методам, которые использованы в другой науке для получения известных решений сходных проблем. Так, в начале своего развития теория информации существенно опиралась на фундаментальные идеи статистической физики. Теперь же, когда теория информации хорошо разработана, построенный в ее рамках математический аппарат оказывается весьма полезным при построении методов статистической физики. Например, разработанный в, теории вероятностей наименее предубежденный (или наименее ошибочный) метод нахождения распределения вероятностей может быть использован в статистической физике для построения равновесных функций распределения. Краткому изложению этого метода, в основе которого лежит понятие информационной энтропии, посвящен этот раздел. [c.353]

    Важной и актуальной проблемой технической кибернетики является в настоящее время использование теории информации для получения критериев, характеризующих качество промышленных регулирующих устройств и информационную согласованность отдельных узлов таких устройств, критериев, которые стали бы научной основой проектирования, нормирования, стандартизации и применения измерительных приборов. [c.37]

    При развитии термодинамики на основе теории информации необходимо рассматривать все термодинамические процессы в тесной взаимосвязи с информацией о состоянии систем. Вместо обычных поточных схем, используемых инженерами-химиками, необходимы информационно-поточные схемы. [c.84]

    На вход объекта В от объекта А поступает управляющая информация X . По аналогии с терминологией теории систем автоматического управления эту информацию можно назвать задающим воздействием.Она представляет собой инструкцию о том, каким должен быть выход объекта С. В классических системах автоматического регулирования управляющая информация конкретизирует цель управления в виде задающего воздействия x = x l,. .., х п), включающего все п координат, характеризующих состояние управляемого процесса. В АСУ из-за исключительной сложности процессов цель управления формулируется в более общем виде. Здесь в качестве задающего воздействия, определяющего цель управления объектом С, обычно используется вектор х = х и. .., х 1), включающий не все показатели производственного процесса, а лишь основные обобщенные показатели выходной продукции объекта С (номенклатура, качество, производительность) и ограничения по ресурсам (материалы, сырье, энергетические и финансовые расходы, используемое оборудование). Все остальные операции по преобразованию вектора х в вектор X , а также по преобразованию трансформированного управляющего воздействия х в управляющую информацию осуществляются алгоритмом управления объекта Д на основе использования данных о текущем состоянии объекта С, хранящихся в информационной системе объекта В. [c.22]

    Формулу (4.6) в соответствии с теорией подобия можно рассматривать как унифицированную модель температурной зависимости ФХС веществ. Здесь под термином унифицирование подразумевается преобразование исходного уравнения с натуральными параметрами и свойствами в тождественное ему уравнение с безразмерными информационными параметрами. Как следует из (4.5), для и Qт принята одна и та же безразмерная шкала измерения с диапазоном варьирования от О до 1, т.е. булевая шкала, которая является математической основой современной информатики. [c.61]

    По мере развития теории и практики АСУ стала очевидной необходимость ликвидировать все эти недостатки. Появилась концепция построения единого общесистемного информационного обеспечения АСУ на основе банков данных, удовлетворяющая следующим требованиям минимальному времени на поиск данных, возможности работы различных прикладных программ с одними и теми же данными, если этого требует алгоритм их обработки, независимости программы от данных, ЭВМ сама в нужный момент времени поставляет их программе для счета. [c.93]

    Исходя из вышеизложенного, в настоящее время разработаны основы теории активации жидкофазного состояния вещества, базовые методы диагностики активированного состояния сред и основы методов управления энергетическими и информационными свойствами жидкофазных систем, что создает предпосылки для развития новых технологий активации сред и биообъектов. [c.356]

    Предлагаемый метод математического моделирования основан на универсальной теории информации К. Шеннона, положивщей во второй половине XX в. начало бурному развитию мировой информационной технологии. Фундаментальной основой этой теории является вероятностная энтропийная формула Л. Больц-мана, преобразованная К. Шенноном применительно к информационным системам (в случае неравновероятных событий) в уравнение для расчета энтропии (количества) информации 3  [c.48]


    Из предложенного чрезмерного обилия (исчисляемого несколькими сотнями) преимущественно эмпирических методов расчета ФХС практически ни один не удовлетворяет современным требованиям информационной технологии по теоретической обоснованности, степени адекватности и универсальности применения. Методы математического моделирования, основанные на теории подобия, позволивпше добиться исключительно весомых успехов в ряде смежных отраслей наук (аэро- и газодинамике, тепло- и электротехнике, механики и др.), применительно к химической технологии не оправдали ожидаемых опти-.мистичных надежд. Скромные результаты были получены также при моделировании химических систем на основе закона физхимии о соответственных состояниях, являющегося по существу частью общей теории подобия. [c.6]

    Автоматизированная система управления производством обеспечивает оптимальную работу предприятия на основе широкого использования теории управления, экономико-математических методов и современных средств обработки информации (ЭВМ, устройств накопления, регистрации и т. д.). АСУП относится к системам человек — машина, так как центральное место в управлении сохраняется за человеком. С внедрением АСУП достигаются оперативная обработка больших количеств информации упорядочение информационных потоков, научно обоснованное принятие решений. В зависимости от уровня автоматизации и участия человека в управлении АСУП подразделяют на информационно-справочные, ииформационно-советующне, ин-формационно-управляющие, самонастраивающиеся и самообу-чающие. [c.300]

    В книге изложены основные идеи теории строения, современные представления о природе химических связей в органических молекулах, о стереохимии и конформаци-онном анализе. На этой основе рассматриваются важнейшие типы и механизмы химических реакций электрофиль-ные, нуклеофильные и радикальные. Книга включает в себя материал о фотохимических превращениях, поведении биоорганических веществ в ней применены принципы кдрреляционного и информационного анализа органических соединений. [c.2]

    Впервые появившись в работе Р. Клаузиуса Механическая теория тепла в связи с формулировкой второго закона термодинамики, понятие энтропия впоследствии прочно утвердилось в различных отраслях научного знания теории информации, биологии, химии, политэкономии и других. Однако, практически, внедрение этого понятия в ту или иную область науки сопровождается многочисленными критическими замечаниями, связанными с обоснованностью термодинамических аналогий. Используемая в теории информации теоретико-информационная энтропия , введенная на строгой формальной основе, имеет гораздо больший авторитет в научных исследованиях и практических приложениях. Обращаясь к современному состояншо развития понятия энтропия , необходимо отметить, что оно было принято более на интуитивном уровне и исходя из многочисленных экспериментов, подтвердивших тот факт, что любая изолированная физическая система, выведенная из первоначального состояния равновесия путем некоторого внешнего воздействия, переходит в новое состояние равновесия с меньшими способностями к превращениям, нежели она имела в первоначальном состоянии. Поэтому на интуитивном уровне стало возможным приращение энтропии интерпретировать как меру способности физической системы к превращениям, а равновесное состояние, которое стремится принять изолированная система в результате внешнего воздействия, считать наиболее вероятным. [c.100]

    В настоящее время одним из важных вопросов теории химических графов является разработка теоретико-информащтонных инвариантов графа [19]. Множество соответствующих элементов, полученных из молекулярного графа, разбивается на основе соотнощения эквивалентности на непересекающиеся подмножества, и для расчета информационного содержания структуры используется формула Шеннона [20] . Информационное содержание графа может рассматриваться как количественная мера его структурной неоднородности или же разнообразия. Например, из двух графов и [c.209]

    В Ма1ЬСА0 включены многочисленные функции и графические средства для идентификации параметров зависимостей, вычисляющих оценки информационных выборок на основе теории вероятности и математической статистики, а также специальные функции, изменяющие качественные характеристики исходной информации  [c.258]

    На решение проблемы информационного обеспечения физикохимическими данными направлена разработка системы автоматизированного обеспечения физико-химической газовой динамики рекомендациями с оценками достоверности (система АВОГАДРО) [7]. В основу такой разработки положено представление о физической, математической и информационной моделях предметной области, включающей определенные разделы физики молекулярных, атомных и электронных столкновений, физико-химической кинетики, спектроскопии, кинетической теории газов и газовой динамики. При этом физическая модель формируется в виде образов, представлений и допущений нри описании того или иного явления математическая модель включает набор переменных для онисания состояния исследуемых объектов и уравненш с коэффициентами, замыкающими соотношениями, начальными и граничными условиями, что [c.8]

    Регулирование величины МЭЗ может осуществляться также в дискретном режиме по определенной программе, предусматри- вающей управление рабочими и холостыми ходами инструмента, включение и выключение источника питания на основе квантова- ния периодов обработки по времени или пройденному инструментом пути. Такие системы регулирования МЭЗ могут быть отнесены к циклическим (детерминированным) системам, хотя взаимосвязь между объектом управления — электрохимической ячейкой н управляющим устройством в промежутках между единичными циклами носит информационный характер. К таким системам относятся разомкнутые системы регулирования МЭЗ, получивщ иё название дискретных систем. Название отражает прерывистый характер обработки, но не является вполне точным, так как не эквивалентно аналогичному понятию из теории автоматического регулирования [174], где под дискретной системой понимается система автоматического регулирования, имеющая в составе хотя бы один импульсный (дискретный) элемент. [c.111]

    Чтобы быстро и обоснованно шбрать тип, структуру и компоне пъ1, ингибированной пленки для решения конкретной задачи противокоррозионной защиты, надо иметь информационную систему, которая содержала бы сведения о всех конструктивных и технологических разновидностях пленок и была удобна в инженерной практике. Система - множество элементов, находящихся в отношениях и связях друг с другом, образующих определенную целостность, единство [85]. Стандартные методы систематизации машиностроительных материалов (классификация, кодирование, создание номенклатурных справочников и т.п.) направлены главным образом на обеспечение полноты их описания и унификацию, т.е. рациональное сокращение материалов одинакового функционального назначения. С развитием ЭВМ появилась возможность оптимизировать эти процессы, используя методы типологии. Типология - научный метод, основа которого - расчленение систем объектов и их группировка с помощью обобщенной модели или типа [85]. Этот термин, предложенный в 1913 г. швейцарским ботаником О.Декандолем, долгое время употреблялся в биологии как синоним систематики. В 60 - 70-х годах таксономию стали определять как более узкую дисциплину - раздел систематики. Таксономия -теория классификации и систематизации сложноорганизованных областей действительности, имеющих обычно иерархическое строение [85]. Ее задача - создание системы соподчиненных групп объектов (так называемых таксонов), которая позволила бы построщъ наиболее информативную непротиворечивую и удобную классификацию, оптимально отражающую действительность. [c.168]

    Из обзора зарубежной и отечественной литературы [2-4,15,25,26] следует вывод о том, что из предложенного чрезмерного обилия, исчисляемЬго несколькими сотнями, преимущественно эмпирических методов расчета ФХС практически ни один не удовлетворяет современным и перспективным требованиям информационной технологии по теоретической обоснованности, степени адекватности и универсальности применения. Разумеется, что чисто эмпирическим подходом по принципу "черного ящика" с регрессионным анализом массива данных, т.е. без учета физико-химической сущности функционирования (поведения) химических веществ, нельзя конструировать универсальные высокоадекватные математические модели их ФХС. Методы математического моделирования, основанные на теориях подобия [15,16], позволившие добиться исключительно высоких успехов в ряде нехимических отраслей наук (аэро-, газо- и гидродина .ике, тепло- и электротехнике, механике и др.), применительно к химии не оправдали оптимистичных прогнозов. Весьма скромные результаты бьши получены также при моделировании химических систем на основе принципа ("закона") физхимии о соответственных состояниях [15]. Как будет показано в этой работе, главной причиной неудач вышеперечисленных теоретических представлений применительно к химическим системам является игнорирование или неадекватный учет влияния молекулярной массы, молекулярной структуры и химического состава веществ на их ФХС. [c.4]

    Публикация выводов Эйвери, Мак-Леода и Мак-Карти в 1944 г, была принята с большим удивлением и недоверием, так как едва ли кто-либо ранее придавал ДНК такую информационную роль. Существовало предположение, что ДНК выполняет какую-то функцию в наследственных процессах, особенно после того, как Фёльген в 1924 г. показал, что ДНК является основным компонентом хромосомы. Но существовавшие тогда представления о молекулярной природе ДНК делали почти невероятным вывод, согласно которому ДНК могла быть носителем наследственной информации. Во-первых, начиная с 1930 г. существовало общепризнанное мнение, что ДНК представляет собой простой тетрануклеотид, состоящий из остатков адениловой, гуаниловой, тимидиловой и цитидиловой кислот (фиг. 73). Во-вторых, даже когда в начале 40-х годов наконец установили, что молекулярная масса ДНК на самом деле значительно выше, чем это следует из тетрануклеотидной теории, многие еще продолжали верить, что тетрануклеотид служит основной повторяющейся единицей большого полимера ДНК, в котором четыре пуриновых и пиримидиновых основания чередуются, образуя периодическую последовательность. ДНК, следовательно, рассматривалась как монотонно однообразная макромолекула, которая, подобно другим монотонным полимерам, таким, как крахмал (см. гл. II), всегда одинакова, независимо от природы ее биологического источника. Вездесущему присутствию ДНК в хромосомах большей частью приписывали чисто физиологическую или структурную роль. В то же время считали, что именно хромосомный белок придает информационную роль генам, поскольку еще в начале века были определены большие различия в специфичности структуры гетеро-логичных белков одного и того же организма или гомологичных белков различных организмов. Эйвери, Мак-Леод и Мак-Карти понимали во всей полноте трудность обоснования генетической роли ДНК и в заключительной части своей работы высказали следующее утверждение Если результаты представленного исследования о природе трансформирующего начала подтвердятся, то придется признать, что нуклеиновые кислоты обладают биологической специфичностью, химическая основа которой еще не установлена . [c.159]

    Предметом генетики человека служит изучение явлений наследственности и изменчивости у человека на всех уровнях его организации и существования молекулярном, клеточном, организменном, популяционном, биохорологическом, биогеохимическом. С периода зарождения (начало XX века) и особенно в период интенсивного подъема (50-е годы XX века) генетика человека развивалась не только как теоретическая, но и как клиническая дисциплина. В своём развитии она постоянно подпитывалась как из обшебиологических концепций (эволюционное учение, онтогенез), так и из генетических открытий (законы наследования признаков, хромосомная теория наследственности, информационная роль ДНК). В то же время на процесс становления генетики человека как науки постоянно существенно влияли достижения теоретической и клинической медицины. Человек как биологический объект изучен детальнее, чем любой другой объект генетического исследования (дрозофила, мышь и др.). Изучение патологических вариаций (предмет врачебной профессии) служило основой для познания наследственности человека. В свою оче- [c.7]


Библиография для Основы информационной теории: [c.265]   
Смотреть страницы где упоминается термин Основы информационной теории: [c.260]    [c.49]    [c.87]    [c.76]    [c.193]    [c.76]    [c.23]    [c.351]    [c.13]    [c.130]    [c.1078]   
Смотреть главы в:

Превращения углеводородов на металлсодержащих катализаторах -> Основы информационной теории




ПОИСК





Смотрите так же термины и статьи:

Информационная РНК



© 2025 chem21.info Реклама на сайте