Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Процессы с непрерывной регенерацией катализатора

Рис. 6.19. Технологическая схема процесса риформинга с непрерывной регенерацией, катализатора (ФНИ) Рис. 6.19. <a href="/info/28503">Технологическая схема процесса</a> риформинга с <a href="/info/1466680">непрерывной регенерацией</a>, катализатора (ФНИ)

    Первые промышленные установки каталитического риформинга появились в 40-х годах и предназначались для облагораживания прямогонных бензиновых и лигроиновых фракций. Разработка и освоение в последующие годы ведущими фирмами мира различных модификаций процесса каталитического риформирования (процессы платформинг, магнаформинг, ультраформинг, пауэр-форминг и др.) значительно изменили технологию переработки углеводородного сырья и ассортимент получаемых продуктов. Были усовершенствованы схемы технологических процессов, появилось новое высокопроизводительное оборудование, разработаны более совершенные катализаторы. Повышенная активность и избирательность катализаторов позволила увеличить производительность существующих установок. Технологические усовершенствования процесса риформинга в последние годы, помимо разработки новых катализаторов, велись в направлениях снижения гидравлического сопротивления реактора, перехода на полунепрерывную и непрерывную регенерацию катализатора. [c.3]

    Схема процесса каталитического риформинга с непрерывной регенерацией катализатора по технологии FIN представлена на рис. 12. [c.41]

    Схема процесса каталитического риформинга с непрерывной регенерацией катализатора по системе, разработанной Французским институтом нефти (FIN), представлена на рис. 64 [64]. Первая такая установка введена в эксплуатацию в 1973 г. Реакционная секция на установ ке состоит из четырех реакторов, расположенных в один ряд. Внутри реакторов имеется система полированных решеток для равномерной циркуляции катализатора. Число [c.185]

    Освоение установки с НРК компанией "ЮОПи" в 1971 г. стало второй вехой в истории развития и совершенствования технологии риформинга. Благодаря непрерывной регенерации катализатора удается поддерживать высокий уровень его активности, что обеспечивает стабильно повышенный выход катализата и водорода в жестких условиях процесса. [c.58]

    Несмотря на то, что основную долю составляют заводы небольшой мощности, они отличаются высокой степенью технической оснащенности. На них представлены практически все современные процессы нефтепереработки (гидрокрекинг, изомеризация, алкилирование, риформинг, в том числе с непрерывной регенерацией катализатора, ККФ с лифт-реактором, производство масел, битумов, кокса) и др. [c.38]

    Другой путь реализации риформинга при пониженном давлении заключается в создании процесса с непрерывной регенерацией катализатора. В этом случае используется система с раздельным реактором и регенератором и циркулирующим между ними катализатором [15]. Необходимо, однако, чтобы катализатор обладал высокой механической прочностью, так как при истирании недостаточно прочных катализаторов эксплуатационные расходы на [c.147]


    Процесс окислительной регенерации катализаторов, будучи одной из важнейших и необходимых стадий многих процессов, непрерывно раз-видается и совершенствуется. Наибольшее внимание исследователей привлекали процессы регенерации катализаторов крекинга, которые быстро закоксовываются в основном процессе. Такое положение естественно, так как показатели процесса крекинга сильнее других зависят от того, насколько быстро и качественно проведена регенерация катализаторов. Именно поэтому регенерация указанных катализаторов изучена наиболее глубоко как с точки зрения понимания механизма и химизма процесса, так и в плане разработки теоретически обоснованных кинетических моделей, методов расчета и оптимизации регенераторов. В то же время успехи в исследовании окислительной регенерации алюмохромовых катализаторов дегидрирования, которые также быстро коксуются, менее значительны. [c.134]

    Процесс каталитического риформинга усовершенствовали в направлении не только разработки новых би- и полиметаллических катализаторов, но и перехода на полунепрерывную и непрерывную регенерацию катализатора. Последняя впервые осуществлена в 1971 г. на заводе в Техасе по технологии, разработанной фирмой иОР. В этом процессе активность катализатора в течение длительного времени остается постоянной, что позволяет работать на неизменном режиме и с постоянным выходом продуктов. Кроме того, такой процесс отличается от обычного меньшей загрузкой катализатора в реакторах и меньшим количеством циркулирующего водородсодержащего газа. Катализатор перемещается в аппара- [c.162]

    Температурные режимы процессов крекинга сырья и сжи- гания кокса регулируются путем изменения кратности циркуляции катализатора, температуры конечного нагрева сырья в змеевиках печей и воздуха в подогревателе. При необходимости, например в случае повышен наг г. выхода кокса и накопления его на катализаторе, реактор может быть отключен, а непрерывная регенерация катализатора продолжена [221]. [c.245]

    МПа и обеспечивает получение риформата с октановым числом 90—100 (по исследовательскому методу) б) второй вариант основан на непрерывной регенерации катализатора. Процесс проводят под давлением 0,8—1,0 МПа, позволяет получать риформат с октановым числом 100 и выше (И. М.). [c.41]

    Процессы с непрерывной регенерацией катализатора в специ- [c.45]

    Перераспределение водорода в процессе каталитического крекинга вызывает отложение кокса на поверхности катализатора и потерю его активности. Вследствие этого появляется необходимость в непрерывной регенерации катализатора, что достигается выжиганием кокса в токе воздуха. Поэтому, работа катализатора при крекинге складывается из двух последовательных стадий рабочего процесса в реакторе и восстановления активности в регенераторе (регенерация), как показано на рис. 7.8. [c.137]

    Активность алюмомолибденовых, алюмохромовых и алюмоко-бальтмолибденовых катализаторов, которые использовались в начале развития процессов риформинга (1940—1950 гг.), снижается через несколько десятков часов работы, после чего необходима их окислительная регенерация. Поэтому в процессе устанавливали сменно-цикличный график работы реакторных устройств с неподвижным слоем алюмомолибденового катализатора или осуществляли его при непрерывной регенерации катализатора. В последнем случае применяли системы с раздельным реактором Т1 регенератором и циркулирующим между ними катализатором. Но первому варианту работали процессы гидроформинг и ВНВ рабочий цикл составлял соответственно 4—24 и 120—240 ч. По второму варианту эксплуатировались установки гидроформинг-флюид, ТСК и гипер-форминг. [c.63]

    Ввиду высокой эндотермичности процесса и работы в отсутствие разбавителя-теплоносителя вначале применяли трубчатые реакторы, обогреваемые топочными газами, с чередованием периодов дегидрирования парафинов и регенерации катализатора. Затем широко распространились систе.мы с псевдоожиженным микросферическим катализатором. В них скомбинированы регенеративный принцип использования теила и непрерывная регенерация катализатора, аналогичная рассмотренной для каталитического крекинга (стр. 45). Катализатор выходит из реактора дезактивированным и поступает в регенератор, где воздухом выжигают кокс. За счет экзотермичности последней реакции катализатор разогревается и снова поступает в реактор, где выполняет дополнительную золь теплоносителя, компенсирующего затраты тепла на эн- [c.491]

    Процессы риформинга с непрерывной регенерацией катализатора (НРК) [c.73]

    При создании достаточно прочных катализаторов процесс с непрерывной регенерацией катализатора в специальном регенераторе вероятно будет обладать преимуществами по сравнению с процессом на стационарном катализаторе более высокий средний уровень активности катализатора может обеспечить лучшие соотношения между выходом бензина, ароматических углеводородов и водорода и выходом газообразных углеводородов. Кроме того, в таком процессе наблюдается постоянное качество и выход бензина и водородсодержащего газа в течение всего времени работы установки. [c.148]


    Достоинством процесса является низкий выход кокса в расчете на сырье (на 2- 3 порядка меньше по сравнению с каталитическим крекингом), коксовая нагрузка регенератора и циркуляция катализатора для поддержания его равновесной активности на высоком уровне в системе незначительны и позволяют дополнительно ужесточить технологический режим за счет резкого снижения общего давления до 1 и даже 0,35 МПа. Процессы с непрерывной регенерацией катализатора хорошо себя зарекомендовали как при работе по бензиновому, так и ароматическому вариантам. В настоящее время строят установки каталитического риформинга большой мощности только типа РНРК. Недостатком процессов с непрерывной регенерацией являются повышенные на 25% капитальные затраты, усложнение эксплуатации и повышенный расход катализатора. Имеется несколько разновидностей оформления процесса непрерывного риформинга, а также много путей снижения капитальных и эксплуатационных затрат. [c.160]

    Устранение вышеуказанных недостатков процесса риформинга достижимо на установках с движущимся слоем и непрерывной регенерацией катализатора при постоянной подпитке системы свежим катализатором. [c.55]

    Процесс с непрерывной регенерацией катализатора в специальном регенераторе. В этом процессе используется система с раздельным реактором и регенератором и циркулирующим между ними катализатором. Циркуляция катализатора невелика и длительность его пребывания в реакторе составляет многие сутки. [c.64]

    Каталитический реформинг, после его внедрения в 1949 году, традиционно является основным источником водорода на НПЗ. Поскольку потребность в водороде на НПЗ повысилась, процесс платформинга фирмы "ЮОП", предназначенный для удовлетворения требований в более высоком октановом числе, проводился в режиме, более чем покрывающем эту потребность. На рис. 3 показано, каким образом повышалось производство водорода на установках платформинга, начинал с 1950 года. Современная технология платформинга R (платформинг с непрерывной регенерацией катализатора) достигает четырехкратного производства водорода по сравнению с технологией 50-ых годов и является результатом усовершенствования катализатора, улучшений технологической схемы процесса и требования более высокого октанового числа. [c.471]

    В патентах приведены прямоточные и противоточные сз емы циркуляции катализатора и подачи сырья. Из-за пониженного (1,15 М1]а) рабочего давления в реакторе необходимо было выбрать схему, обеспечивающую низкий перепад давления. Использование одноходового вертикального сырьевого теплообменника и новой конструкции огневого подогревателя снизило перепад давления в реакторе с 0,8 до 0,42 МПа. Использование вертикального теплообменника позволило уменьшить потери тепла на 40% по сравнению с обычными горизонтальными теплообменниками. Соответственно уменьшились эксплуатационные и капитальные затраты на охлаждение отходящего из реактора потока. Применение оборудования, обеспечивающего снижение перепада давления и повышение эффективности теплосъема, позволило повысить жесткость процесса риформинга. Непрерывная регенерация катализатора сохраняет его равновесную активность при низком давлении, повышает выход и октановое число риформата. Регенерация осуществляется в четырех независимых зонах нагрева, выжига кокса, оксихлорирования, сушки и охлаждения при радиальном потоке газа через слой катализатора. В дальнейшем за счет реконструкции давление в реакторе снизили до 0,7 МПа, объемную скорость подачи сырья повысили до 1,5 Ч-1, кратность циркуляции ВСГ понизили до 2,5, скорость циркуляции катализатора повысили с 300 до 900 кг/час. [c.162]

    Благодаря непрерывной регенерации катализатора удается поддерживать более высокий уровень его активности, чем в системах со стационарным слоем катализатора. На установках UOP используют биметаллические (Pt—Re) катализаторы R-16, R-20 и R-22 (имеются сообщения об использовании катализатора R-20/30 [123, с. 61]). Процесс идет под давлением 0,9—1 МПа при циркуляции водородсодержащего газа 400—500 м /м сырья (при нере- [c.183]

    Благодаря непрерывной регенерации катализатора, установка гидроформинг-флюид могла работать при низких давлениях и кратности циркуляции ВСГ условия процесса приведены в табл. 5.2 [116]. [c.55]

    Реакции каталитического крекинга протекают на поверхности катализатора. Направление реакций зависит от свойств последнего, качества сырья и условий процесса. В результате крекинга на поверхности катализатора отлагается кокс, поэтому важной особенностью каталитического крекинга является необходимость непрерывной регенерации катализатора (выжигание кокса). [c.96]

    Тем не менее ужесточение режима каталитического риформинга представляет определенный интерес не только потому, что способствует увеличению выхода ароматических углеводородов. Поскольку содержащиеся в риформатах парафины и нафтены образуют азеотроп-иые смеси с ароматическими углеводородами, для их выделения в чистом виде исиользуют процессы жидкостной экстракции селективными растворителями (полигликолями, сульфолаиом и др.). Применение жидкостной экстракции, обеспечивая высокий выход и высокую чистоту аро.матических углеводородов, значительно удорожает их производство. В условиях высокой жесткости, какая осуществима на устаг(овках рифор.ми[1га с непрерывной регенерацией катализатора, в частности в процессе аромайзинг, происходит глубокое, почти исчерпывающее превращение нафтенов и парафинов Q—Qo в другие углеводороды с более низкой молекулярной массой, не -образующие азеотропных смесей с ароматическими углеводородами Q и толуолом. В результате становится врз.можным выделение технического ксилола (ароматических Сд) и толуола необходимой чистоты, обычной ректификацией 1211. В комплекса.х по производству ароматических углеводородов установки риформинга с непрерывной регенерацией катализатора работают в режиме, обеспечивающем получение технического ксилола ректификациейчриформата.  [c.184]

    В состав большинства установок риформинга, конечной продукцией которых являются ароматические углеводороды (установки 35-6, 35-8, 35-12, 35-13) входят блокн жидкостной экстракции. При проведении процесса риформинга в особо жестких условиях суммарные ксилолы могут быть выделены из катализатов четкой ректификацией. На комплексах производства ароматических углеводородов (КПА), головным процессом которых является риформинг с непрерывной регенерацией катализатора, суммарные ксилолы выделяют последним способом. КПА включают также процессы переработки ароматических углеводородов С,—Се (см. схему — рис. 2.22) и их конечной продукцией являются бензол, о- и л-ксилол. [c.130]

    С 1997 году после реконструкции пущен в эксплуатацию ко.мплекс уста-ноьки Л-35-11-1000, состоящий из нескольких секций. В составе ко.мплекса блок подготовки широкой прямогонной бензиновой фракции, новая мощность гидроизомеризации легких бензиновых фракций, блок каталитического риформинга с системой непрерывной регенерации катализатора, В основу проекта положены технология ВиАЬРОКМГМО Французского инспггута нефти и технология изомеризации той же фирмы. Проведение процесса каталитического риформинга при пониженном давлении способствует увеличению выхода платформата, а применение реакторного > зла с непрерывной регенерацией катализатора обеспечивает высокое качество и необходимую продолжительность межрегенерационного пробега. Комплекс рассчитан на переработку неблагоприятных видов сырья. [c.240]

    То, что катализатор не участвует в стехиометрическом уравнении реакций, не означает абсолютной неизменности его состава и свойств. Под влиянием реагентов, примесей, основных и побочных продуктов реакций, циркуляции и температуры катализатор всегда п ретерпевает физико — химические изменения. В этой связи в про — мышленных каталитических процессах предусматриваются операции замены, периодической или непрерывной регенерации катализатора. [c.80]

    Превращения нафтеновых и парафиновых углеводородов в ароматические — обратимые реакции, протекающие с увеличением объ ма и поглощением тепла. Следовательно, по правилу Ле — Шателье (см. 7.2.1), равновесная глубина ароматизации увеличивается с ростом температуры и понижением парциальног о давления водорода. Однако промышленные процессы риформинга вынуж-денЕЮ осуществляют либо при повышенных давлениях с целью подавления реакций коксообразования, при этом снижение равно — весной глубины ароматизации компенсируют повышением темпе-рат) ры, или с непрерывной регенерацией катализатора при пониженных давлениях. [c.179]

    Важным этапом в развитии и интенсификации процессов ри( зорминга являлись разработка фирмой ЮОП и внедрение в 1971 г. наиболее передовой технологии каталитического риформинга с непрерывной регенерацией катализатора (КР НРК). [c.191]

    Д.1я непрерыилых процессов характерна длительная работа реактора нрн постоянном (или практически постоянном) режиме, непрерЫБПой равномерной подаче сырья и непрерывном выводи всех продуктов. Стационарный режим реактора обеспечивается непрерывным подводом тепла (термические процессы) или непрерывной регенерацией катализатора в отдельном аппарате — регенераторе (каталитический крекинг). Другим вариантом осуществления непрерывного каталитического процесса является создание режима в реакторе, препятствующего дезактивации катализатора (каталитический риформинг). [c.83]

    В течение полувека за рубежом были разработаны различные модификации пропесса риформинга с использованием платинового катализатора, которые отличались составом катализатора, технологической схемой и ре си дом. Каталитический риформинг классифицируется на нерегенеративный и регенеративный процессы. Регенеративные процессы, в свою очередь можтю разделить на периодические, Щ1кличные и непрерывные регенерации катализатора. Ниже рассмотрены основные зарубежные варианты процесса каталитического риформинга с использованием платиновых катализаторов. [c.58]

    Вариант дуалформинг. 1РРразработал и внедрил в промышленном масштабе процесс дуалформинг, позволяющий реконструировать традиционную установку риформинга с целью получения более высоких выходов продуктов (рис. 5.14). Одним из преимуществ процесса дуалформинг является максимальное использование оборудования, имеющегося в традиционной технологической схеме установки, но предусмотрен монтаж нового реактора с системой непрерывной регенерации катализатора, включенного в имеющуюся схему. Требуется также замена теплообменника сырье/риформат, монтаж новой печи и дополнительный компрессор для водорода. В этом варианте среднее давление в реакторе снижается с 2,6 МПа до 1,5 МПа. Для обеспечения [c.185]

    Владельцы нефтеперерабатывающих заводов, имеющие в своем распоряжении по-лурегенеративные или циклические риформинг-установки, могут увеличить октановое число до тех пор, пока стабильность катализатора и выход продукта снизятся до точки, за которой дальнейшее увеличение октанового числа станет неприемлемым экономически или технически. Тогда владелец должен обдумать методы повышения эффективности риформинг-установки. Одна из возможностей - это выбор катализатора с более высокой активностью и более высокой стабильностью, такого как катализатор К-б2. Для скачка на следующую ступень активности процесса риформинга можно внедрить технологию Платформинга -непрерывной регенерации катализатора (НРК) путем переделки уже существующей бок о бок установки или же, вложив деньги на приобретение новой установки. Операция регенерации катализатора, идущая под пониженным давлением, позволяет нефтепереработчику увеличить до предела выход продукта риформинга и увеличить детонационную стойкость октана. [c.208]

    В институте нефтехимического синтеза АН СССР под руководством Я.Р.Кацобашвили в пилотном масштабе разработан проц сс гидрокрекинга нефтяных остатков под невысоким давлением (до 3 МПа) с циркулирующим потоком микросферического непрерывно регенерирующего катализатора. Процесс основан на поддержании активности катализатора не за счет применения высокого давления, а за счет непрерывной регенерации катализатора. Гидрокрекинг сырья и регенерация закоксованного катализатора осуществляются соответственно в реакторе и регенераторе с кипящим слоем микросферичес- [c.201]

    Одним из путей интенсификации риформинга со стационарным слоем катализатора, как было отмечено выше, является снижение давления и повышение температуры процесса, что способствует углублению реакции ароматизации, а следовательно, и повышению октанового числа бензинов. Однако при этом происходит резкое возрастание коксообразования, которое приводит к быстрой дезактивации катализатора, снижению селективности процесса н, в конечном счете, к сокращению продолжительности рабочих циклов. Разработка и внедрение более стабильных катализаторов, обеспечивающих довольно длительный межрегенерационный период эксплуатации установок при низко.м давлении, сыграли важную роль в совершенствовании процесса риформинга с ПРК. Однако возможности повышения стабильности катализатора не безграничны, поэтому возникла необходимость освоения принципиально новай технологии с непрерывной регенерацией катализатора - процесса риформинга с НРК. [c.73]

    Технологическая схема процесса, разработанного фирмой Shell Oil, с непрерывной регенерацией катализатора представлена на рис. 4.12. Сырье подвергают осу лке в аппаратах 1 и подают в реактор 2. Реакционная масса разделяется вотстойнике 4, из которого часть катализатора рециркулирует в реактор 2, а часть поступает в регенератор 3, соединенный с реактором 2. Углеводородный поток фракционируют в деизобутанизаторе 5 и депропанизаторе 6. Алкилат после испарителя 7 подвергают щелочной и водной промывке в скрубберах 8. Благодаря применению регенерации расход катализатора снижается на 90%. [c.128]

    На установках с непрерывной регенерацией катализатора давление процесса может быть снижено до 0,9—1,0 МПа а мольное отношение водорода к сырью до 2—3. Работа установки при столь низком давлении на постоянно обновляемом катализаторе, активность котсфого мало отличается от свежего, позволяет получать высокий выход товарных продуктов. [c.171]

    Первая установка с использованием технологии фирмы UOP и непрерывной регенерацией катализатора введена в эксплуатацию в 1971 г. в Техасе (США). Этот процесс был усовершенствован (рис. 7). На некоторых установках реакционная секция также состоит из четырех реакторов с радиальным потоком три первых реактора расположены друг над другом и выполнены в виде одной конструкции, а четвертый - отдельно, но все они работают последовательно от первого до четвертого включительно. В четвертом реакторе содержится половина катализатора, другая половина распределена в первых трех реакторах, причем наименьшее количество размешено в первом реаюоре. Распределение катализатора можно изменять в зависимости от конкретного случая. [c.41]


Смотреть страницы где упоминается термин Процессы с непрерывной регенерацией катализатора: [c.163]    [c.99]    [c.168]    [c.213]    [c.187]    [c.176]   
Смотреть главы в:

Каталитический риформинг бензинов -> Процессы с непрерывной регенерацией катализатора




ПОИСК





Смотрите так же термины и статьи:

Процесс непрерывный



© 2025 chem21.info Реклама на сайте