Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Литий см Натрий

    В первую группу периодической системы входят типические элементы (литий, натрий), элементы подгруппы калия (калий, рубидий, цезий, франций) и элементы подгруппы меди (медь, серебро, золото). [c.587]

    В главной подгруппе первой группы периодической системы находятся литий, натрий, калий, рубидий, цезий и франций В соответствии с номером группы в своих соединениях (в большинстве случаев ионных) они проявляют всегда степень окисления -Ы. Чисто ковалентное а—ст-связывание имеет место в газообразных молекулах Кза, Ка и т. д. Эти элементы — самые неблагородные . Их стандартные потенциалы порядка от —2,7 до —3,0 В (ср. табл. В.14). Ионные радиусы сопоставлены в табл. А.16. Обраш,ает на себя внимание тот факт, что при переходе от натрия к калию изменение радиусов оказывается, большим, чем в следующем за ними ряду элементов К—НЬ—Сз почему ). Это обстоятельство является главной причиной отличия свойств натрия от его более тяжелых аналогов. С учетом этого становится понятной аналогия в свойствах соответствующих соединений калия, рубидия и цезия. Особо следует под  [c.597]


    ПОДГРУППА (А (ЛИТИЙ, НАТРИЙ, КАЛИЙ, РУБИДИЙ, [c.296]

    Литий, натрий и калий получают в промышленности в больших количествах. Мировое производство натрия составляет сотни тысяч тонн в год. [c.298]

    Начало построения новых оболочек происходит в атомах элементов основной подгруппы первой группы периодической системы (водород, литий, натрий, калий, рубидий, цезий и франций). Единственный электрон, находящийся в наружной оболочке этих [c.35]

    При высоких температурах вопрос об основном стандартном состоянии элемента во многих случаях существенно усложняется и выбор его становится еще более условным. Пары серы, селена, фосфора, мышьяка, натрия, калия и некоторых других элементов обладают сложным молекулярным составом, который меняется с температурой. Так, в парах серы содержатся в равновесии молекулы 82, 5б, 83 и другие относительное содержание их зависит от температуры и давления. В подобных случаях чаще всего целесообразно принять в качестве основного стандартного состояния элемента газ, состоящий из молекул одинакового состава. Так, в настоящее время в качестве основного состояния для серы и фосфора иногда принимают газ с двухатомными молекулами, а для лития, натрия и калия — газ с одноатомными молекулами. При наличии необходимых данных расчет свойств реального газа не представляет затруднений. [c.24]

    ЭТОМ отчетливо вырисовывается, что линии, отвечающие однотипным хлоридам, принадлежат к одному семейству и сравнительно мало -различаются по углу наклона. Такова группа линий хлоридов лития, натрия, калия и серебра, к которым можно было бы добавить и другие подобные им хлориды, не показанные на рисунке во избежание его загромождения. Такова группа линий тетрахлоридов углерода, кремния, германия, олова, титана, циркония и гафния. [c.101]

    Энтальпия газообразных монохлоридов лития, натрия, бериллия и магния по данным и монохлорида магния, рассчитанная по уравнениям (V, 5) и (V, 6) [c.179]

    М - металл - литий, натрий. .. (металлоорганические соединения)  [c.274]

    В табл. V, р приведен пример расчета энтальпии Нт — Но монохлорида магния по данным работы для газообразных монохлоридов лития, натрия и бериллия по двум уравнениям  [c.179]

    Высокотемпературные составляющие энтропии газообразных монохлоридов лития, натрия, бериллия и магния по данным и монохлорида магния, рассчитанные по уравнениям (V, ) и (У,8) [c.180]

    По способности изменять величину коксообразования при каталитическом крекинге нефтепродуктов металлы можно условно разделить на три группы. К первой группе относятся щелочные и щелочноземельные металлы (литий, натрий, калий, цезий, бериллий, магний, кальций, стронций), которые подавляют коксообразование. Из исследованных щелочных металлов наименьшее коксообразование вызывает добавка калия и цезия (рис. 70). Время, требуемое для отложения на катализаторе 2 вес. % кокса, с увеличением концентрации добавляемого металла возрастает. При добавлении щелочноземельных металлов это время возрастает не так резко. Характерная особенность щелочноземельных металлов — при добавлении их к катализатору в равных концентрациях количество образующегося кокса на всех образцах практически одинаково. [c.163]


    В диффузионной области горения наибольшее влияние на выжиг коксовых отложений оказывает добавление железа. На образце катализатора, содержащем 0,8 вес. % железа, отложенный кокс сгорает в два раза быстрее, чем на исходном катализаторе. Остальные металлы в какой-то степени ускоряют выжиг кокса при их содержании в катализаторе в больших концентрациях. Так, на образцах, содержащих до 0,5—0,8 вес. % никеля, меди, кобальта, хрома, молибдена и до 1,5—1,3 вес. % лития, натрия, калия, бериллия, магния, кальция, стронция, кокс выжигается в 1,2 раза быстрее. На образцах, содержащих микродобавки этих металлов, скорость горения кокса такая же, как исходного образца катализатора. Добавка свинца не влияет на скорость регенерации катализатора. [c.167]

    В низкотемпературном пламени светильный газ — воздух атомные линии излучают щелочные металлы литий, натрий, калий, рубидий, цезий. Для определения калия используют излучение резонансного дублета 766,5 и 769,9 нм (4 51/2—4 Р°1/2.3/2), расположенного на границе видимой и инфракрасной частей спектра. Потенциал возбуждения этих спектральных линий ( в) — 1,62 эВ. Факторы специфичности интерференционных фильтров калия по отношению к излучающим в этих условиях элементам достаточно высоки и достигают нескольких тысяч. Влияние состава анализируемого раствора на интенсивность излучения калия в большой степени зависит от его концентрации и температуры пламени. В пламени светильный газ — воздух ионизация атомов калия незначительно проявляется лишь при его низких концентрациях в растворе порядка 1—2 мкг//мл. Присутствие [c.40]

    Метод основан на последовательном фотометрировании дублетов спектральных линий калия 4 51/2—4 P°i/2, 3/2 769,9, 766,5 нм ( а = 1,62 эВ) и лития 2 Si/2—22Р 1/2,3/2 670,8 нм ( в = 1,85 эВ) , излучаемых атомами калия и лития а пламени светильный газ — воздух. Факторы специфичности интерференционных светофильтров при определении калия в присутствии лития, натрия и кальция составляют 10 , а лития в присутствии калия и натрия— 10 —10 что обусловливает хорошую избирательность анализа смеси калия и лития методом фотометрии пламени. Предел обнаружения калия и лития — 5-10 %. [c.45]

    Активирующие добавки (литий, натрий, калий и другие элементы) при введении их в сырье в виде гидроокисей или солей щелочных металлов заметно снижают масляное число саж. По-видимому, МОЖНО найти добавки, которые при необходимости могут повышать структурность саж. Однако при этом необходимо установить влияние этих добавок на реакционную способность саж. Известно, что жидкое сажевое сырье, кроме высококонденсированных ароматических углеводородов, содержит в небольших количествах асфальтены [35]. На основе механизма превращения компонентов нефтяных остатков в углерод [112] следует ожидать более быстрого превращения асфальтенов в кокс, чем высококонденсированных ароматических углеводородов в сажу. Наличие асфальтенов в сырье должно при прочих равных условиях снижать структурность саж. Высказанные предположения находятся в согласии с данными ряда авторов, занимающихся выявлением зависимостей между структурностью саж и технологическими факторами. [c.136]

    При разложении перхлоратов лития, натрия, щелочноземельных металлов и металлов П1 группы одновременно протекает другая реакция, например  [c.107]

    Из веш,еств, вводимых в зону образования комплекса, следует упомянуть об аммониевых солях фосфорных кислот, которые весьма эффективно снижают коррозию аппаратуры, вызываемую продуктами гидролиза карбамида [86], а также о небольших количествах активированного угля [87], которые способствуют вовлечению в комплекс неразветвленных углеводородов. Известны также предложения о добавлении к веществам, образующим карбамидный комплекс, таких соединений, как хлориды, фосфаты, нитраты, бораты и ацетаты калия, лития, натрия, аммония и их смесей [88], однако о результатах не сообщается. [c.44]

    В отсутствие воздуха ненасыщенные ароматические углеводороды часто очень легко реагируют с литием, натрием и калием. Обычно при этом с щелочным металлом соединяются те атомы углерода, которые связаны с арильными группами (а иногда те, которые связаны с алифатическими ненасыщенными группами). Реакция может протекать с присоединением к двойной связи двух атомов натрия [c.500]

    При сжигании лития, натрия и калия в кислороде воздуха получили кислородные соединения. [c.160]

    ОРГАНИЧЕСКИЕ СОЕДИНЕНИЯ ЭЛЕМЕНТОВ ПЕРВОЙ ГРУППЫ (ЛИТИЯ, НАТРИЯ, КАЛИЯ) [c.103]

    Имеется несколько банок с карбонатами и сульфатами лития, натрия и калия. Укажите прсс-той способ, которым можно опреде.яить а) какие из них содержат карбонаты б) в какой из банок карбонат лития (см. 15-77)  [c.116]

    I. Взаимодействие металлов с водой. (Работать под тягой в защитных очках ) В кристаллизатор с водой добавляют несколько капель фенолфталеина. Пинцетом достают кусочек щелочного металла из склянки, где он хранится под слоем керосина, и высушивают его фильтровальной бумагой. Касаться руками щелочного металла нельзя, так как возможны ожоги. Ножом отрезают небольшую часть (размеры со спичечную головку) и пинцетом переносят ее в кристаллизатор с водой. Наблюдают за протеканием реакции. Аналогично проводят опыты с литием, натрием и ка- [c.128]


    Взаимодействие кислородных соединений металлов с водой. Полученные в предыдущем опыте продукты окисления лития, натрия и калия растворяют в небольшом количестве воды. (Работать в защитных очках, так как в продуктах сгорания может быть несгоревший металл.) К полученным растворам приливают подкисленный серной кислотой раствор иодида калия и несколько капель раствора крахмала. Наблюдают изменение окраски растворов. Делают вывод о свойствах и составе кислородных соединений, образующихся при сгорании лития, натрия и калия. [c.129]

    В низкотемпературном пламени светильный газ — воздух атомные линии излучают щелочные металлы литий, натрий, калий, рубидий, цезий. Для определения калия используют излучение резонансного дублета 766,5 и 769,9 нм (4251/2—4 Р°1/2,3/2), расположенного на границе видимой и инфракрасной частей спектра. Потенциал возбуждения этих спектральных линий Ев) — 1,62 эВ. Факторы специфичности интерференционных фильтров калия по отношению к излучающим в этих условиях элементам достаточно высоки и достигают нескольких тысяч. Влияние состава анализируемого раствора на интенсивность излучения калия в большой степени зависит от его концентрации и температуры пламени. В пламени светильный газ — воздух ионизация атомов калия незначительно проявляется лишь при его низких концентрациях в растворе порядка 1-—2 мкг//мл. Присутствие 2—4 мкг/мл натрия в растворе, содержащем менее 2 мкг/мл калия, увеличивает интенсивность излучения калия. При более высоких концентрациях калия в растворе влиянием легко ионизующихся примесей можно пренебречь. Кислоты и анионы уменьшают интенсивность спектральных линий калия, причем наибольшее влияние оказывают фосфат-ионы. Предел обнаружения калия составляет 0,05 мкг/мл. [c.40]

    Полимеризация простых диенов (бутадиен, изопрен) может инициироваться радикалами или протекать по монному механизму. Полимеризация в растворителях в промышленности вытеснена эмульсионной радикальной полимеризацией. В качестве инициаторов, вызывающих образование свободных радикалов, применяются в первую очередь перекиси (в частности, персульфаты щелочных металлов), затем ароматические диазоэфиры, алифатические азосоедкиения и т. д. находят применение также щелочные металлы (литий, натрий, калий) и комплексные соли Циглера. [c.953]

    Показано, что фенолы, в том числе и дифенилолпропан , при 140—200 °С реагируют с алкиленкарбонатом (например, с этиленкарбонатом) в присутствии гидридов щелочных металлов (лития, натрия, калия) количество катализатора 0,025—0,1% от реакционной массы. Так, при взаимодействии дифенилолпропана с 1,2-карбонатом глицерина в присутствии Ь Н получается бис-оксиалкилиро-ванный продукт  [c.35]

    Начало исследований по синтезу 4-полиизопрена в СССР относится к 1938—1940 гг. В это время Ставнцкий и Ракитянский (ВНИИСК) опубликовали результаты своих работ по полимеризации изопрена в присутствии лития, натрия и их органических соединений. Полученные полимеры характеризовались более высокой эластичностью и прочностью по сравнению с полибутадиеном, хотя свойства НК воспроизвести не удалось. Во время Великой отечественной войны исследования были прекращены и возобновлены в 1948 г. Коротковым. Следует подчеркнуть, что в этот период значительное развитие получили методы свободнорадикальной полимеризации. Полимеризация диеновых углеводородов в присутствии металлорганических соединений за рубежом рассматривалась как малоперспективное направление. [c.200]

    Металлы главной подгруппы первой группы — литий, натрий, калий, рубидий, цезий и франций — называются щелочными металлами. Это название связано с тем, что гидроксиды двух главных представителей этой группы — натрия и калия — издавна были известны под названнем щелочей. Из этих щелочей, подвергая их в расплавленном состоянии электролизу, Г. Дэви в 1807 г. впервые получил свободные калий и натрий. [c.561]

    Калпй К, рубидий НЬ, цезий С8 и франций Рг — полные электронные аналоги. Хотя у атомов щелочных металлов число валентных электронов одинаково, свойства элементов подгруппы калия отличаются от свойств натрия и, особенно, лития. Это обусловлено заметным различием величин радиусов их атомов и ионов. Кроме того, у лития в предвнешнем квантовом слое 2 электрона, а у элементов подгруппы калия 8. Ниже приведены некоторые сведения о литии, натрии и об элементах подгруппы калия  [c.592]

    Все щелочные металлы энергично соеднняююя с кислородом. Рубидий и цезпй самовоспламеняются иа воздухе литий, натрий и калий загораются при небольшом нагревании. Характерно, что только литий, сгорая, образует нормальный оксид Ь(20, остальные же щелочные металлы превращаются в пероксидйые соединения ЫазОг. КОа, РЬОз, СзОа. [c.563]

    Экспериментальные данные по изучению устойчивости дисперсии ПА в растворах различных электролитов не дают однозначного ответа на вопрос о влиянии различных ионов на структурную составляющую. Можно предположить, что механизм образования ГС в присутствии различных ионов достаточно сложен. На сложный характер влияния ионо иотропного ряда на состояние воды в ГС указано, в частности, в работе [479], где приводятся данные о структурной составляющей расклинивающего давления П , действующего между гидрофильными кварцевыми пластинками в широком интервале концентраций галогенидов лития, натрия и калия (10 —1 моль/л), свидетельствующие о значительном различии величины максимумов Пг и их положения для ионов лиотропного ряда. [c.186]

    При сварке ацетилено-кислородным пламенем газовой горелки присадочным материалом служат стержни того же состава, что и металл восстанавливаемой детали, или стержни из силумина (сплав, содержащий 85,5—88% алюминия, 7—9% меди, 5,0—5,5% кремния). Для защиты наплавленного металла от окисления используются в виде порошка или пасты флюсы, содержащие хлористые соединения калия, лития, натрия, бария, а также фтористый натрий, плавиковый шпат и криолит. [c.85]

    Сильно дегидрирующие металлы (никель, медь, кобальт) даже при ничтожном их содержании в катализаторе приводят к резкому увеличению коксоотложения вследствие повышенного образования непредельных углеводородов. Слабодегидрирующие металлы (ванадий, хром, молибден, железо) при небольшом их содержании в катализаторе (до 0,01 вес. %) образуют меньше кокса, чем исходный катализатор. При большем содержании металла в катализаторе коксообразование увеличивается. При содержании тяжелых металлов в катализаторе более 0,03—0,05 вес. % характер их влияния на изменение времени, необходимого для отложения 2% кокса, одинаков. По уменьшению количества образующегося кокса исследованные металлы располагаются в следующем порядке никель, медь>кобальт> молибден, ванадий > железо, хром>сви-нец>бериллий, магний, кальций, стронций>литий>натрий>ка-лий>цезий. Тормозящее влияние щелочных металлов возрастает в соответствии с увеличением их основности [257]. [c.176]

    Так как перенапряжение существенно влияет на величину потенциала разряда, то оно может кардинально изменить и последовательность разряда ионов при электролизе. Так, например, большое катодное перенапряжение водорода на таких металлах как железо, цинк, медь, никель препятствует разряду ионов Н3О+ и позволяет получать эти металлы электролизом водных растворов их солей. Наоборот, малое катодное перенапряжение водорода на бериллии, алюминии, тантале или при электролизе растворов солей лития, натрия, калия не может компенсиро- [c.333]

    Наибольппш интерес представляют ЭОС таких элементов, как литий, натрий, магний, бор, алюминий, кремний, фосфор, железо. С ними и познакомимся. [c.192]

    Пары щелочных металлов (лития, натрия, кальция) о(5разуют донорные межслоевые соединения и разрушают СУ. [c.505]

    РЬАРН0-4 в основном предназначен для определения щелочных элементов — лития, натрия, калия, рубидия по их резонансным спектральным линиям, а также кальция по молекулярной полосе с максимумом испускания 622 нм. Возможно определение и других элемен- [c.31]

    Окрашивание пламени горелки солями лития, натрия и калия.Чистую нихромозую спираль смачивают заствором соли лития и вносят в пламя газовой горелки. Наблюдают окрашивание пламени. Такой же опыт проводят с солями натрия и калия. При необходимости нихромовую спираль очищают, для чего ее промывают хлористоводородной кислотой и прокаливают в пламени горелки до исчезновения окраски пламени. [c.129]

    Получение малорастворимых солей лития, натрия и калия. На часовое стекло наносят каплю насыщенного раствора соли лития (Ь1С1, Ь12304) и прибавляют каплю концентрированного раствора Na2 Oз. Что наблюдается  [c.129]

    Все щелочные металлы энергично соединяются с кислородом. Рубидий и цезий самовоспламеняются на воздухе литий, натрий и калий загораются при небольшом нагревании. Характерно, что только литий, сгорая, образует нор- мальный оксид ЫгО, остальные же щелочные элементы превращаются в пероксид (Na202) и супероксиды (КО2, Rb02, СзОг). [c.383]


Смотреть страницы где упоминается термин Литий см Натрий: [c.405]    [c.35]    [c.246]    [c.330]    [c.264]    [c.108]    [c.243]    [c.127]    [c.321]   
Общая химия в формулах, определениях, схемах (0) -- [ c.0 ]




ПОИСК







© 2025 chem21.info Реклама на сайте