Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Хлорирование бензола и толуола

    Большинство растворителей ацетон, бензол, толуол, дихлорэтан, петролейный эфир, бензин - пожароопасны. Безопасны в пожарном отношении хлор- и фторсодержащие углеводороды, например хладон-113 и трихлорэтилен. Наиболее токсичными и сильно действующими на организм человека являются хлорированные углеводороды. Хлор- и фторсодержащие углеводороды наименее опасны. [c.32]


    Ароматические углеводороды вследствие своей резонансной характеристики более устойчивы к иррадиации [772, 773], но с ними могут индуцироваться химические реакции. Таким образом, обработка Х-лучами нейтральных водных растворов бензола, насьщенного кислородом, дает фенол, пирокатехин-хинол, пара-бензохинон, альдегид и следы дифенила. В этом случае молекулярный кислород, но-видимому, принимает участие в реакциях радикалов [774]. Можно заметить для сравнения в водном растворе, содержанием кислород и этилен, гамма-лучи вызывают цепные реакции, которые образуют альдегиды с меньшим содержанием спиртов, кислоты, перекиси водорода и других перекисей. Для альдегидов выход в молекулах на 100 эе был около 200 [775]. Подобным же образом индуцируется гамма-лучами хлорирование более низких ароматических соединений таких, как бензол, толуол, ксилол и мезитилен однако бензол устойчив [776]. Как для бензола, так и для толуола хлорирование пропорционально квадратному корню интенсивности излучения это применимо и к присоединению, и к замещению [777 ]. Изучалось также и влияние радиации на асфальты [778]. Изменения, по-видимому, в отличие от вызываемых продувкой воздухом, линеарны по времени и проходят с небольшой скоростью. [c.152]

    Гексахлорбензол с высокими выходами получают исчерпывающим хлорированием бензола и его хлорпроизводных в присутствии катализаторов. Хлорирование можно вести как в жидкой, так и в газовой фазах при повышенной температуре. Последний способ предпочтительнее. ГХБ можно получать также исчерпывающим хлорированием гептана, хлорированием толуола. [c.425]

    В промышленности осуществляется значительное количество процессов, протекающих в системе газ — жидкость. Так, в нефтехимической промышленности широко распространены процессы алкилирования ароматических углеводородов и их производных газообразными олефинами, полимеризация олефинов в чистом виде или в соответствующем растворителе, хлорирование бензола, толуола, нитробензола и других производных. Перечисленные процессы, протекающие в двухфазной системе, являются гетерогенными  [c.95]

    Хлорирование бензола, толуола, нафталина и других углеводородов производится в промышленном масштабе. Бензол превращается в хлорбензол при действии хлора при 50° в железном реакторе побочными продуктами являются о- и л-дихлорбензолы. Другие ароматические углеводороды ведут себя при хлорировании так же, как и при бромировании. [c.66]


    Хлорирование различных органических соединений — бензола, толуола (в боковую цепь и в ядро), фенолов и др. . [c.17]

    Скорость хлорирования толуола зависит от применяемого катализатора и может в 3,5—275 раз превышать скорость хлорирования бензола [38]. Последовательность внедрения атомов хлора в ядро молекулы толуола такова  [c.33]

    При хлорировании бензола или толуола газообразным хлором в присутствии хлорида железа(III) примеси сернистых соединений нарушают технологический режим и выводят из строя катализатор (образование так называемых черных осадков ), усили- [c.117]

    По прогнозам ежегодный прирост мирового потребления стирола будет 6,8 % и к 1983 г. его производство составило 15,5 млн. т/год [59]. Около 94 % производимого в мире фенола получается из бензола, в том числе приблизительно 90 % промышленных мощностей приходится на кумольный метод и 4 % — на процессы щелочного плавления бензолсульфокислоты и окислительного хлорирования бензола [60]. Остальное количество фенола получается из толуола через бензойную кислоту. [c.333]

    В промышленном масштабе широко проводится хлорирование бензола и толуола. В настоящее время замещение хлора в арома- [c.65]

    Этилцеллюлоза — смесь продуктов различной степени зам.е-щения. В среднем в техническом продукте из трех гидроксилов замещены 2,3—2,4. Этилцеллюлоза с такой степенью замещения растворяется в бензоле, толуоле, уксуснокислых эфирах и хлорированных углеводородах. [c.286]

    В каких условиях осуществляется хлорирование пропилена, изобутана, метилацетилена, бензола, толуола (в ядро и боковую цепь) Назовите образующиеся соединения. [c.47]

    Хлорирование бензола и толуола [c.107]

    Винипласт устойчив к воздействию почти всех кислот, щелочей и растворов солей любых концентраций. Исключение составляют сильные окислители - азотная кислота, олеум. Винипласт нерастворим во всех органических растворителях за исключением ароматических и хлорированных углеводородов, таких как бензол, толуол, дихлорэтан, хлорбен- [c.12]

    Путем хлорирования бензола получаются moho-, три-, тетра-и гексахлорбензол. Монохлорбензол и трихлорбензол применяются в анилинокрасочной промышленности. Тетрахлорбензол используется для получения веш еств, употребляемых для протравки семян хлопчатника. Гексахлорбензол — хороший протравитель для пшеницы. Он является также сырьем для получения антисептиков древесины. В связи с высокой стоимостью бензола в последнее время для некоторых производств вместо бензола изыскиваются другие виды сырья. Так, например, в США при производстве найлона вместо бензола используется циклогексан нефтяного происхождения, фурфурол, бутадиен. Разработан процесс получения стирола из толуола и ацетилена [221]. [c.157]

    Винипласт устойчив к воздействию почти всех кислот, щелочей II растворов солей любых концентраций. Исключение составляют сильные окислители (азотная кислота, олеум). Винипласт нерастворим во всех органических растворителях за исключением ароматических и хлорированных углеводородов (бензол, толуол, дихлорэтан, хлорбензол). В большинстве случаев химическая стойкость винипласта, наивысшая для средних концентраций, низка для высоких и низких концентраций. Материал легко обрабатывается резанием, легко деформируется в горячем состоянии, хорошо сваривается и склеивается [c.201]

    Наибольшее применение находит этилцеллюлоза с высокой степенью замещения 2,3—2,6 (этоксиль-ное число 45—49%). Такая этилцеллюлоза хорошо растворяется в бензоле, толуоле, хлорированных углеводородах, ацетоне и смесях растворителей (например, спирта и бензола), но не растворяется в бензине и других нефтепродуктах. Она не омыляет-ся кислотами и щелочами, имеет хорошую адгезию к различным поверхностяв , более пластична, чем ацетат целлюлозы. Температура размягчения этилцеллюлозы 165—185 °С. Материалы на ее основе обладают хорошей водостойкостью, высокой ударной вязкостью, стойкостью к атмосферным и химическим воздействиям. По показателям диэлектриче- [c.106]

    В промышленном масштабе широко проводится хлорирование бензола и толуола. [c.61]

    ПВБ растворяется в спиртах, кетонах, эфирах, причем добавление к ним до 5% (масс.) воды улучшает их растворяющую способность. Хорошими растворителями ПВБ являются метиловый, этиловый, пропиловый и бутиловый спирты, диоксан, метилацетат, этилацетат, бутилацетат, метилэтилкетон,, уксусная кислота, циклогексанон, этилцеллозольв, пиридин, хлорированные углеводороды. Ароматические углеводороду лучше всего применять в смесях со спиртами в соотношении I 1 1 3. Разбавителями растворов ПВБ являются обычно бензол, толуол, метилацетат. [c.139]

    При пиролизе хлорированных полибутадиенов образуются алифатические соединения, винилиденхлорид, бензол, толуол, ксилол, этилбензол, стирол, хлорбензол, дихлорбензол, изо.мерные три- и тетрахлорбензолы, нафталин и некоторые другие соединения [117, И8]. С увеличение.м степени хлорирования, определяе.мой как число ато.мов хлора, приходящихся на 4 ато.ма углерода, доля алифатических соединений в продуктах пиролиза снижается, а доля аро-.матических соединений возрастает [118]. [c.51]

    Хлорирование бензола ( ), толуола (2), ксилолов (3) превращение сероуглерода в четыреххлористый углерод (4) 2-12% иода J Iз- RH = H l + R I -J I ЛС1з может быть выделен 178 (1) 129 (2) 148 (3) 120 (4) [c.42]


    На хлорирование замещенных ароматических соединений могут оказывать влияние не только полярный, но и пространственный эффект заместителя. Так, скорости хлорирования бензола, толуола и грег-бутилбензола относятся как 1 346 88, что. можно объяснить различным экранированием двойной связи ароматического кольца, препятствующего образованию о-комп-лекса. Понятно, что разница в скоростях монозамещенных бензолов по сравнению с бензолом при взаимодействии с электрофилами будет проявляться тем сильнее, чем более слабой кислотой Льюиса является электрофильный агент. Хлор реагирует с толуолом в 350 раз быстрее по сравнению с бензолом (хлор — слабая кислота Льюиса). Отсюда ясно также влияние основности ароматического соединения (субстрата) на скорость реакции хлорирования и высокая селективность реакции хлор-катиона в орто-, пара-положения в замещенных бензолах (согласно правилу Брауна). Ориентация хлора зависит от природы растворителя (табл. 3). [c.21]

    Было установлеио, что более активные катализаторы приводят к меньшей избирательности реагента ири замещении в ароматическом ядре. Изучение кинетики хлорирования бензола, толуола и хлорбензола в присутствии хлорного железа в четыреххлористом углероде и нитробензоле Н. Н. Лебедевым с сотр. [237, 238] показало, что порядок реакции по хлорному железу сильно зависит от природы растворителя, что связано со степенью ассоциации хлорного железа. Был предложен механизм хлорирования в малоноляриом и полярном растворителях, включающий образовагпге промежуточного соединения, степень поляризации которого увеличивается с ростом диэлектрической постоянной среды. [c.391]

    Освобожденный от сульфоновых кислот углеводород направляют обратно в реактор 1, а метанольпый экстракт подвергают дальнейшей переработке. Поскольку 20—25%-ный раствор алкилсульфоновых кислот (среднее число атомов углерода равно 14—15) может гидро-тропно удерживать еще 4—6% углеводородов, послед гие следует удалить экстракцией легкокипящими растворителями, например патро-лейным эфиром, легким бензином,, циклогекоаном, изооктаном и т. п. Ароматические или хлорированные углеводороды (бензол, толуол, четыреххлористый углерод, хлороформ) для этой цели не подходят. [c.490]

    Интересные результаты получаются при хлорировании углеводородов, Хлорирование бензола под действием у-лучей протекает так же, как под действием ультрафиолетового света. Однако в толуоле под действием ультрафиолетового света хлорируется метильная группа, тогда как под действием у-излучения идет хлорирование в бензольном кольце. Преимущество улучей перед ультрафиолетовыми заключается не только в том, что с помощью первых можно проводить процессы, невозможные при других источниках активации, но и то, что улучи не требуют проведения процесса в стеклянной или в кварцевой аппаратуре. [c.264]

    Ацетилирующие смеси и продукты ацетилирования. В производстве для ацетилирования активированной целлюлозы используют ацетилирующие смеси, содержащие три компонента ацетилирующий агент (уксусный ангидрид) катализатор (серную или хлорную кислоту) растворитель или разбавитель. Если смесь содержит растворитель ацетата целлюлозы (ледяную уксусную кислоту или хлорированные углеводороды, такие как дихлорэтан, дихлорметан) процесс заканчивается в гомогенной среде с получением гомогенного раствора ацетата целлюлозы в ацетили-рующей смеси - сиропа. Такой метод называют гомогенным ацетилированием, хотя фактически реакция идет гетерогенно. Если же в состав ацетилирующей смеси входит разбавитель, не растворяющий ацетат целлюлозы (бензол, толуол, четыреххлористый углерод), ацетилирование начинается и заканчивается в гетерогенной среде. Такой метод называют гетерогенным ацетилированием. Растворители и разбавители увеличивают жидкостный модуль и тем самым умеряют подъем температуры в начале процесса, вызванный экзотермическим характером реакции ацетилирования. [c.605]

    Улучшение кристаллической структуры с помощью модифика- торов структуры. Имеется много предложений по совершенствованию процессов депарафинизации и обезмасливания путем введения в сырьевой раствор различных добавок и присадок [144—146 и др.]. Для улучшения кристаллической структуры были рекомендованы депрессорные присадки, в особенности парафлоу (продукт конденсации хлорированного парафина с нафталином) в количестве 0,1 —1,6 вес. %, сантопур (продукт конденсации хлорированного парафина с фенолом) в количестве 0,05—1,0 вес. %, полисти-ролметакрилаты (0,2—0,6 вес. %) и ряд других присадок. В патентах [147—153] в качестве модификаторов структуры парафина в процессах депарафинизации и обезмасливания рекомендуются продукты алкилирования бензола, толуола или нафталина хлорированным парафином, полиэтилен и полиэтиленовые воски, смесь сополимера винилацетата и диалкилфумарата, а также парафино- / ме углеводороды is-С22 [153]. Добавка их позволяет снизить" кратность разбавления, улучшить четкость разделения парафина и масла и повысить скорость фильтрации. [c.155]

    В качестве исходных веществ в произподстве присадок применяют алкйлфенолы, сульфокислоты, олефины, хлорированные парафины, нафталин, серный ангидрид, пятисернистый фосфор, углекислый газ, гидрат окиси бария, гидрат окиси кальция, органические кислоты, спирты и многие другие продукты, а в качестве растворителей — бензин, бензол, толуол, различные спирты, керосин, воду. Например, синтез беззольной моющей сукцинимидной присадки происходит в два этапа. [c.385]

    Другие известные способы переработки ОПС предполагают разрущение их структуры с выделением опдельных компонентов и их последующим повторным использованием. Предложен способ разрушения отработанной литиевой смазки, обеспечивающей эффективное и быстрое разделение ее на исходные компоненты. Способ предполагает обработку смазки в автоклаве при температуре 100°С и перемешивании в присутствии воды и специального вещества, способствующего разрушению смазки. Другой процесс предусматривает экстрагирование масла из ОПС с помощью комбинированного растворителя, состоящего из ацетона (10—90%) и как минимум еще одного из компонентов петролейного эфира, бензола, толуола, ксилола, хлорированных углеводородов. [c.320]

    Средний молекулярный вес стандартных образцов полипропилена достигает 150 ООО. Предел прочности нри растяжении такого полимера равен 330—360 Л г/г.)г, удлинение при разрыве достигает 400—800%. Как и полиэтилен, иолипропилен обладает превосходными диэлектрическими свойствами и устойчив к действию кислот и щелочей. При комнатной температуре стереорегулярный полипропилен не растворим в органических растворителях, при температуре выше 80 растворим в бензоле, толуоле, хлорированных углеводородах. [c.216]

    Хлорирование. Полимер легко подвергается хлорированию под влиянием сульфурилхлорида БОгОз- В присутствии небольшого количества пиридина и при облучении ультрафрголетовым светом через 48 час. при 20° образуется высокохлорированный полимер, в котором на каждое звено макромолекулы приходится от 1,96 до 3,86 атомов хлора. Хлорсульфоповых групп в полимере не обнаружено. Хлорированный полимер сильно набухает н дихлорэтане, бензоле, толуоле. [c.354]

    Реакции присоединения хлора к ароматическому ядру имеют промышленное значение только для производства гексахлорциклогекса-на путем фотохимического хлорирования бензола. Процесс производства гексахлорциклогексана (гексахлорана) имеет много общего с жидкофазным хлорированием парафинов и толуола в боковой цепи. Гексахлоран — один из широко распространенных ядохимикатов инсектицидного действия. Из всех его стереоизомеров инсектицидной активностью обладает только -у-изомер (т. пл, 112° С), которого содержится в техническом продукте 11—16% (табл. 23) остальные изомеры — балласт. Можно получать обогащенный -у-изомером гексахлоран, например, путем дробной кристаллизации технического продукта. В небольших количествах выпускается и почти 100%-ный у-изомер (линдан). [c.130]

    При хлорировании ПВХ в водной суспензии или 5-20%-ном водном р-ре H I в реакц. смесь часто добавляют нек-рое КОЛ-ВО орг. р-рителя (напр., бензола, толуола, хлорбензола), способствующего набуханию полимера. Хлорирование ускоряется также введением небольших кол-в радикального инициатора и поддержанием небольшого давления в реакторе т-ра не должна превышать 60 °С. Р-цию прекращают после достижения необходимого содержания хлора в П.х. (т) из суспензии удаляют остатки I2 и НС1 полимер отделяют и сушат. [c.622]

    Винипласт устойчив к воздействию почти всех кислот, щелочей и растворов солей любых концентраций. Исключение составляют сильные окислители — азотная кислота, олеум. Винипласт нерастворим во воех органических растворителях за исключением ароматических и хлорированных углеводородов, таких как бензол, толуол, дихлорэтан, хлорбензол. Из винипласта изготовляют обечайки, днища, штуцера, трубопроводы химических производств, работающие в интервале температур от О до 40 °С при давлении до 0,6 МПа. Винипласт, изготавливаемый в виде пленки толщиной 0,3—1,0 мм, применяется в качестве антикоррозионной футеровки стальной химической аппаратуры. [c.15]

    Значение пластмасс и некоторых продуктов органического синтеза существенно возрастет в будущем, хотя основным источником сырья для их получения пока является нефть с очень высоким ИИР (13,17о). Положение может быть изменено к лучшему, если удастся сократить расходы нефтепродуктов для топливных целей. В настоящее время на неф ехимические синтезы расходуется 5—6% всей нефти, но к-2000 г. эта доля возрастет до 15%. Следует отметить, что разведанные запасы нефти сейчас оцени- ваются величиной 120 млрд. т. Но предполагается, что к 2000 г. эти запасы будут расширены до 270 млрд. т. В современном нефтехимическом синтезе в основном используются низшие ненасыщенные ациклические и ароматические углеводороды. Эти соединения получают пиролизом газообразных парафинов, легких нефтяных фракций, а в последнее время тяжелых фракций и даже самой нефти. Современные установки для пиролиза укрупнены настолько, что могут производить от 500 до 700 тыс. т в год ненасыщенных углеводородов. В результате переработки нефти получают много продуктов, среди которых важнейшими являются низшие олефины и диолефины (этилен, пропилен, бутадиен и изопрен), ароматические соединения (бензол, толуол, ксилол) и газовая смесь оксида углерода (И) с водородом. Эти вещества — исходное сырье для многих тысяч промежуточных и конечных продуктов, некоторые из них указаны на рисунке 8. Переработка алифатических, алициклических и ароматических углеводородов осуществляется с помощью таких процессов, как дегидрогенизация, окисление, хлорирование, сульфирование и т. д. [c.71]

    Вхождение хлора в ядро одновременно с замещением водорода метильной группы должно быть по возможности устранено. Поэтому при охлорении толуола тщательно избегают присутствия тек катализаторов, которые применяются при хлорировании бензола и которые благоприятствуют замещению в ядре, ибо при их участии получаются вместо только-что названных продуктов о- и и-хлорто-луолы С1СбН4СНа. Таким образом возможно в зависимости от выбранных условий направить реакции в ту или другую сторону по схеме  [c.113]


Смотреть страницы где упоминается термин Хлорирование бензола и толуола: [c.414]    [c.70]    [c.385]    [c.124]    [c.187]    [c.574]    [c.575]    [c.105]    [c.192]    [c.210]    [c.230]    [c.149]    [c.71]    [c.106]   
Смотреть главы в:

Химия и технология ароматических соединений в задачах и упражнениях -> Хлорирование бензола и толуола

Химия и технология ароматических соединений в задачах и упражнениях Издание 2 -> Хлорирование бензола и толуола




ПОИСК





Смотрите так же термины и статьи:

Бензол хлорирование

Толуол хлорирование



© 2025 chem21.info Реклама на сайте