Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Молекулярные графы и типы молекулярных структур

    Следует иметь в виду, что перечисленные типы химической связи в твердых телах почти всегда встречаются не в чистом виде, а в различных сочетаниях. Например, в графите наряду с ковалентной связью между атомами углерода проявляется и молекулярная. Графит имеет слоистую структуру, в которой плоскости связаны молекулярными силами и легко смещаются относительно друг друга. Именно благодаря этому свойству графит используется в карандашах и в качестве смазки. [c.165]


    От чего же зависит тип решетки для каждого твердого тела При образовании кристалла, составляющие его частицы, выбирают такую решетку, чтобы энергия взаимодействия между ними была возможно больше. В зависимости от природы взаимодействия все решетки могут быть разделены на атомные, металлические, ионные и молекулярные. Атомные решетки состоят из атомов, связанных гомеополярными (ковалентными) связями (например, кристаллические решетки углерода, серы, фосфора). Поэтому число соседей каждого атома в такой решетке (координационное число) определяется валентностью атома. Так, валентность углерода (а также кремния и германия) равна четырем, поэтому алмаз и другие кристаллы элементов IV группы имеют тетраэдрическую структуру. В центре тетраэдра находится атом, связанный гомеополярно (а-связями) с четырьмя соседними атомами, расположенными в четырех вершинах тетраэдра. Таким образом, алмаз по своему строению примыкает к ряду жирных углеводородов (метан, этан, пропан и т.д.) и представляет собой как бы огромный, разветвленный углеводород, в котором все атомы водорода замещены атомами углерода. Другая модификация (разновидность) кристаллов, образованных атомами углерода — графит, примыкает к ароматическим углеводородам. Графит состоит из огромных параллельных друг другу плоскостей. В каждой плоскости атомы углерода образуют связанные между собой шестиугольники так, что каждый атом имеет три соседа. Связи между этими соседями являются о-связями, а перпендикулярно к этим плоскостям направлены я-связи, которые перемещаются вдоль всей плоскости. Этим определяется электропроводность графита (в отличие от алмаза), осуществляющаяся вдоль кристаллических плоскостей. В графите параллельные плоскости сравнительно слабо связаны между собой молекулярными силами, что приводит к легкости их сколь- [c.324]

    МГ в перспективной проекции отражает основные особенно-стп геометрии молекулы и дает наглядное представление об ее структуре. Обсудим в терминах МГ некоторые типы молекулярных структур. Рассмотрим молекулы, для описания структуры которых удобно использовать плоские реализации графов. Простейшим системам такого типа соответствуют древообразные МГ. [c.15]

    Удобно определить молекулярный граф связей как конструкцию, состоящую из точек (ядер) и ребер (связей), в которой разные типы ядер (например, кислорода и углерода) определяют разнотипные точки, а различные типы связей (например, простые и двойные связи) — различающиеся ребра. Хотя в некоторых случаях решение относительно связности (т. е. связаны ли два атома или нет) до некоторой степени произвольно, в общем построение молекулярного графа связей (или модели), соответствующего данной химической структуре, осуществляется непосредственно. При последующем обсуждении термин химическая структура используется для обозначения реально существующего соединения и его молекулярного графа связей. Геометрические свойства таких конструкций являются ключевыми для нашего понимания структуры и реакционной способности. [c.29]


    Ответ. 1) Алмаз и графит имеют одинаковый состав — Соо, но отличаются по свойствам алмаз очень тверд, поскольку имеет кристаллическую решетку атомного типа графит имеет слоистую структуру, поэтому он значительно мягче алмаза. 2) Оксиды кремния и углерода имеют похожие формулы ЗЮг и СО2. Первое вещество очень тугоплавко, поскольку имеет кристаллическую решетку типа алмаза, а второе вещество при обычных условиях — газ, поскольку в твердом состоянии оксид углерода имеет молекулярную решетку со слабым взаимодействием между молекулами. [c.6]

    В отличие от графита у нитрида бора очень высокое электрическое сопротивление, которое возрастает с увеличением чистоты [817]. Это мягкое вещество (твердость 1—2) оно хорошо раскалывается по плоскостям, параллельным плоскостям кристаллических решеток [346]. Хотя нитрид бора иногда добавляется в смеси, его смазывающие свойства, по-видимому, уступают свойствам графита [775]. Значение теплоемкости, соответствующее закону Дюлонга и Пти, не достигается даже при 900° С [649]. Попытки выяснить тип связи в нитриде бора предпринимались многими исследователями [123, 131, 780, 781]. Ввиду слоистой структуры нитрида бора интересно отметить, что он так же, как и графит, образует слоистые соединения [199, 200]. Добавки, которые удавалось ввести до настоящего времени,-представляют собой молекулярные образования молекулы, внедряющиеся между сетками нитрида бора, отличаются от молекул, внедряющихся в графит (гл. V). [c.86]

    В нервом разделе обсуждаются способы анализа молекулярных структур в терминах графов, которые используются затем для по-строепня топологических индексов и иа пх основе корреляции типа структура — свойство, излагаются также элементы молекулярного дизайна. [c.9]

    В свою очередь каждый из изомеров II, III и IV порождает два новых и т. д. Весь этот процесс можно изобразить в виде графа. Для этого поставим в соответствие каждому изомеру точку на плоскости. Наличие 1,2-перегруппировки, переводящей один изомер в другой, позволяет считать эти точки смежными и поэтому две такие точки соединяются ребром (рис. 1.13). Граф, изображенный на этом рисунке, называют тонологическим представлением описанной выше перегруппировки. По-видимому, работа [48] была одной из первых, в которой подробно проанализирована структура графов, возникающих при описании внутримолекулярных перегруппировок. В последующих работах, например [49], графы исиользовалпсь для описания перегруппировок в различных системах с высокой симметрией молекулярного скелета в октаэдрических, тетраэдрических и др. В работе [49] использовались группы перестановок, содержащие большое число элементов. Рассматривались графы достаточно сложной структуры. При этом решались проблемы, связанные с неоднозначностью реализацией этих графов на плоскости. Было предложено, в частности, располагать вершины графов в вершинах правильных и-угольников, где п равно числу изомеров. Графы строятся таким образом, чтобы они имели максимальное число элементов симметрии. Граф (рис. 1.14) построеи для описания перегруппировок в октаэдрическом комплексе со всеми различными лигандами, нри которых сохраняются положения четырех из лигандов. В такого типа графах имеется гамильтонов цикл, т. е. замкнутый маршрут, проходящий через все вершины графа в точности один раз [49]. [c.27]

    Верхняя диаграмма — бифуркационное множество, соответствующее развертке эллиптической омбилической точки. Дополняя эту диаграмму тремя типами конфликтных структур, получаем часть структурной диаграммы для молекулярной системы С Н . Приведены также поперечные сечения этой структурной диаграммы, показывающие характернь[й молекулярный граф для каждой структурной области. Пунктирные линии на молекулярных графах обозначают взаимопере-сечения поверхностей цикла с плоскостью симмегрии. В случае < О связевь[й путь соединяет два углеродных атома в голове моста, образуя структуру с конденсированными циклами для конфигураций, лежащих в пределах гипоциклоиды. В случае и< > О эти два углеродных атома не связаны, и в результате получаем клеточную структуру, ограниченную тремя циклами. [c.62]

    Мы не рассматривали различные модификации метода. Молекулярные графы показывают связность между атомами, но в них не различаются типы имеющихся атомов и связей. Гетероатом и связи с ним могут быть учтены подходящим выбором соответствующих элементов в матрице смежности. Однако, прежде чем приступить к таким обобщениям, нам следует изучить структуры с небольшим числом гетероатомов и с гетероатомами в том же самом положении в пределах семейства соединений, когда пренебрежение явной дифференциацией вряд ли оказывает какое-либо влияние. Уже в случае изученных соединений с антималярийной активностью мы можем оценить важность различения некоторых гетероатомов путем сравнения log (1/с) для молекул, в которых положение атомов углерода и азота изменено. Рассмотрим следующие пары соединений с антималярийной активностью (эти данные взяты из работы Ганша [16])  [c.234]


    Анализ приведенного выше структурного графа и оценочной формулы (1.193) показывает, что химическая связь в двухатомных молекулах, образуясь за счет внешних валентных электронов, формирует молекулярные структуры с межъядерными расстояниями порядка удвоенных радиусов внешних электронных оболочек и энергией связи порядка первых потенциалов ионизации, причем эффективные заряды атомных остовов оказываются меньше единицы. Интересно отметить, что в рамках рассмотренной упрощенной модели возможен принципиально иной тип связи в двухатомных структурах. Можно предположить, что при некоторых условиях возможно образование гиперхимиче-ских соединений, представляющих собой двухъядерные молекулярные структуры с межъядерными расстояниями порядка удвоенных радиусов внутренних электронных оболочек элементов и энергиями связи порядка потенциалов высоких степеней ионизации. При этом эффективные заряды атомных остовов могут быть больше единицы. [c.63]

    Химики используют в своих рассуждениях мысленные образы, структурные формулы (СФ), структуры Кекуле, диаграммы ORTEP. Однако в меньшей мере используется основная математическая структура этих конструкций. Нашей целью будет разработка алгебраических и топологических характеристик такой структуры первоначально для квантовой химии (молекулы, стадии молекулярных реакций), затем в известной степени для химической кинетики и динамики (нахождение возможных путей, механизмов, определение их стационарных состояний, устойчивости, колебаний). Для квантовой химии, т. е. микрохимии , будут разработаны правила с целью получения обычным путем основных электронных характеристик молекул [система уровней молекулярных орбиталей (МО), реакционная способность, устойчивость к искажениям] и в некоторых математических классах непосредственно из структурных формул или диаграмм ORTEP. На макрохимическом уровне, т. е. при нахождении всех математически возможных путей синтеза, механизмов, при разработке правил стадия/соединение, связывающих число реагентов, продуктов, интермедиатов, катализаторов, автокатализаторов с числом элементарных реакционных стадий в химической смеси и затем с динамическими неустойчивостями, будут использоваться представления иного типа — реакционные схемы, являющиеся графами с двумя типами линий и двумя типами вершин [I]. [c.73]

    Между этим типом межслоевого захвата и образованием клатратных соединений можно установить различие. В клатратных соединениях клетка полностью закрыта, и она не может сильно изменяться по форме, хотя и происходит небольшое приспособление клеток по форме и размерам к включаемым молекулам. В таких стр уктурах пространство, предназначенное для включаемой молекулы, ограничено очень узкими пределами, а это, в свою очередь, сильно ограничивает возможный состав включений и состав структуры в целом. Однако известны и слоистые структуры, в которых слои захватывают другие молекулы так, что создается впечатление об образовании клатратного соединения. Макромолекулярные слои подобны молекулам с конечными размерами, возможное смещение которых должно быть ограничено только ван-дер-ваальсовым взаимодействием. Но в молекулярных соединениях такой формы эти смещения малы, и имеются дополнительные структурные факторы, делающие захват более эффективным по сравнению с межплоскостным захватом в графите. [c.427]

    В трехмерных макромолекулах возможны все три типа сильных связей ионные, металлические и ковалентные (см. (также разд. 2.3.1 т. 1). Вещества с двумерными макромолекулами относительно редки, и в образовании плоскостного остова таких макромолекул участвуют ковалетные связи. Наиболее известны из таких веществ графит, нитрид бора и слюда. Двумерная структура макромолекул часто обусло ливает специфическое механическое поведение таких веществ. Вещества с жесткими линейными макромолекулами (например, 518 2) обы но имеют фибриллярную структуру вследствие относительно слабого взаимодействия в направлении, перпендикулярном оси молекулы. Плав ление веществ как с двумерными, так и линейными жесткими макром лекулами не отличается очень сильно от плавления трехмерных полимеров. Во всех этих случаях при плавлении (или сублимации) утрачивается молекулярная целостность. [c.14]

    Рассмотрим электронные структуры этих атомов и подумаем, как можно объяснить образование связей в кристаллах ВЫ. Для возникновения структуры типа графита как у атома бора, так и у атома азота легко могут образоваться необходимые 5р -гибридные орбитали при промотировании одного -электрона в /7-состояние. Такой атом может быть связан с тремя соседями в плоской гексагональной решетке, что полностью соответствует ориентации 5/7 -гибридных орбиталей. Далее, я(/7г)-орбиталь бора свободна она является акцептором электрона. Эта орбиталь окружена тремя я(рг)-0рбита-лями азота, готовыми играть роль донора электронов. Здесь ситуация такая же, как в В-триметилборазоле (рис. 8.10), в котором длины связей совпадают с длинами связей в бензоле. Из таких группировок образуется плоский слой (см. рис. 8.15), на молекулярных я-орбиталях которого оказывается столько электронов, сколько нужно, чтобы возникли такие же связи, как в графите. [c.264]


Смотреть страницы где упоминается термин Молекулярные графы и типы молекулярных структур: [c.30]    [c.587]    [c.22]    [c.156]   
Смотреть главы в:

Применение теории графов в химии -> Молекулярные графы и типы молекулярных структур




ПОИСК





Смотрите так же термины и статьи:

Графит

Графит графита

Графой

Графы

Структура графита

Структура молекулярная



© 2024 chem21.info Реклама на сайте