Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Поперечные связи белках также

    Одной из основных проблем, свойственной всем исследованиям поперечных химических связей в белках, является установление наличия этих связей, их количества и распределения в сетчатой структуре. Эта проблема актуальна также и для всей химии полимеров, в частности для таких продуктов, как вулканизованный каучук, модифицированные целлюлозные материалы, регенерированные белковые волокна и различные типы пластмасс. Поскольку интерпретация результатов исследования различных реакций образования и расщепления поперечных связей будет дана на основании методов, используемых для определения этих связей, ниже кратко рассматриваются те методы, которые оказались наиболее ценными при исследовании шерсти. [c.395]


    Уникальные свойства белков определяются не только количественными соотношениями между различными аминокислотами, но и определенной последовательностью их расположения в полипептидных цепочках. Аминокислотный состав белка и последовательность расположения аминокислот в полипептидных цепочках называют первичной структурой белка. Первичная структура белка, помимо пептидных связей, содержит также некоторое число дисульфидных мостиков. Исследовать первичную структуру — это значит 1) определить число полипептидных цепей и установить, являются ли они открытыми или замкнутыми, 2.) установить линейную последовательность (порядок чередования) аминокислот в отдельных полипептидных цепях (или цепи) и 3) определить число и местоположение поперечных дисульфидных мостиков, соединяющих эти цепи в молекуле белка. Очевидно, что для разрешения этой задачи необходимо прежде всего иметь очищенные, гомогенные препараты белка, поскольку даже незначительная примесь посторонних белков может существенно исказить получаемые результаты. Кроме того, в распо- [c.77]

    Наличие поперечных химических связей в белках сообщает им специфические свойства, такие, как нерастворимость, меньшая способность к набуханию под действием полярных растворителей и повышенная прочность в мокром состоянии. В небольших молекулах таких биологически активных белков, как инсулин и рибонуклеаза, поперечные дисульфидные мостики оказываются необходимыми для проявления этими белками биологической активности. При этом дисульфидные поперечные связи не участвуют непосредственно в биохимических процессах, а функции их заключаются в сохранении в неизменном состоянии такой конформации молекул белка, которая необходима для проявления биологической активности. Модификация дисульфидных поперечных связей шерсти, а также введение в нее новых поперечных связей часто придают новые интересные свойства этому белку. Такими свойствами могут быть повышение прочности на разрыв, уменьшение способности к свой-лачиванию, увеличение устойчивости к агрессивным химическим реагентам (щелочи, кислоты, окислители или восстановители), повышение устойчивости к моли и износостойкости, а также повышение прочности окрашивания. Было показано, что дубление коллагена, необходимое для превращения сырья в технический продукт, также является процессом образования поперечных связей. Поскольку коллаген не содержит цистеина или цистина, в сшивании, протекающем при дублении, участвуют, по-видимому, другие группы, возможно аминные и гидроксильные. В настоящем разделе будут рассмотрены в первую очередь поперечные химические связи упоминавшихся выше классов белков. Шерсть — типичный кератин, являющийся одним из наиболее детально изученных в этом плане белков, дает интересные и наглядные примеры образования, расщепления и поведения как дисульфидных, так и вводимых искусственно поперечных химических связей другого типа. [c.395]


    Достаточно развернутое описание белков в предыдущих главах не включает поперечных связей и эпигенетических модификаций. Наиболее обычной поперечной связью является дисульфидный мостик, который служит как механическим, так и химическим целям. Механически важные поперечные связи часто образуются с использованием е-аминогруппы Lys. В процессе эпигенетических модификаций главная цепь часто расщепляется. Это очень важный физиологический инструмент, поставляющий необходимый белок в нужное место и в нужное время. Распространены также модификации боковых цепей, которые наделяют ферменты новыми свойствами. Обо всех этих явлениях следует помнить при попытках вывести конкретные заключения из довольно общих принципов, изложенных в начале этой главы. [c.81]

    В табл. 11 приведены сведения, характеризующие свойства молекул белка на границе с воздухом и маслом [131]. Из данных табл. 9 видно, что на границе с маслом энтропия денатурации на порядок больше, чем на границе с воздухом. Это связано с большей гибкостью молекул белка, которая также на порядок выше на границе с маслом. Однако белки на границе с маслом сохраняют некоторые поперечные связи, снижающие гибкость белков на порядок по сравнению с гибкостью полимерного клубка в тех же условиях. [c.203]

    Мы можем заключить, таким образом, что размещение близких заряженных боковых групп в упорядоченном состоянии термодинамически менее благоприятно, чем в аморфном состоянии. Сдвиг равновесия между двумя состояниями может, следовательно, происходить при изменении величины pH среды. В дополнение к этому Шерага также предположил [57], что помимо чистых электростатических эффектов pH может изменить в полипептидах и белках характер водородных связей между боковыми радикалами. Разрыв водородных связей, если они являются составной частью кристаллической структуры, будут способствовать плавлению. Химические реакции, которые вызывают образование или нарушение межцепных поперечных связей, также должны влиять на стабильность упорядоченной структуры. (К более подробному рассмотрению роли поперечных связей мы вернемся в гл. 6). Это обстоятельство существенно при анализе поведения полипептидов и белков, принимая во внимание относительную легкость, с которой можно контролировать химическими методами межцепные дисульфидные связи. Помимо уже рассмотренных, можно представить себе и многие другие типы химических реакций, способных влиять на переход кристалл — жидкость, однако нет никакой необходимости рассматривать здесь все возможные варианты. [c.77]

    Изучить структуру белка на самом простом уровне — значит определить его первичную структуру, т. е. последовательность аминокислотных остатков в полипептидной цепи, а также природу и положение поперечных связей. Вторичная структура белка, т. е. наличие и характер спирализации полипептидной цепи, в значительной степени зависит от первичной структуры. Она, кроме того, зависит от pH и ионной силы раствора, а также от тех свойств среды, которые влияют на водородные связи и гидратацию белка. Третичная структура белка возникает в результате дальнейшего изгибания и скручивания полипептидной цепи, уже имеющей вторичную структуру. В некоторых случаях вторичная и третичная структуры всецело определяются первичной структурой белка. Если такие белки подвергать воздействию повышенной температуры или обработать мочевиной, кислотой, щелочью или другими агентами, которые нарушают вторичную и третичную структуру, не затрагивая первичной, то возможно самопроизвольное восстановление их конформации. Примером подобных белков может служить фермент рибонуклеаза. В этом случае последовательность аминокислот в полипептидной цепи определяет даже положение дисульфидных мостиков, так что если после воздействия восстанавливающими агентами провести окисление в мягких условиях, то-образование поперечных дисульфидных связей происходит в тех же местах, где они были раньше. Другие ферменты необратимо денатурируются даже в относительно мягких условиях. В настоящее время не ясно, каким образом столь лабильная и высокоспецифичная структура, как третичная, возникает во время синтеза ферментного белка на поверхности рибосомы. [c.99]

    Свойство таннинов образовывать поперечные связи с белками и другими полимерами обусловливает их способность ингибировать действие ферментов и активность выделенных растительных органелл они обладают также выраженными вяжущими свойствами, т. е. вызывают ощущение сухости во рту, причиной чего, возможно, является снижение обволакивающего действия гликопротеидов слюны. Очевидно, что как по своей способности связывать белки, так и по другим свойствам, зависящим от этой способности, различные таннины отличаются друг от друга, причем эти различия обусловлены размером их молекул и химической структурой. Для каждой данной структуры существуют оптимальные размеры, при которых способность образовывать поперечные связи с другими полимерами максимальна. [c.330]


    Нейлон, терилен и перлон способны плавиться, в то время как природная или регенерированная целлюлоза не плавится. Считают, что неспособность целлюлозы плавиться, так же как и ее малая растворимость, объясняется большими размерами макромолекул и значительными силами межмолекулярного взаимодействия между гидроксильными группами соседних макромолекул. Белковые волокна также не плавятся, что можно объяснить наличием поперечных связей и разложением белка при нагревании, вероятно, в первую очередь из-за присутствия неустойчивых свободных амино- и карбоксильных групп, способных при высокой температуре взаимодействовать между собой. Нейлон же не содержит таких свободных реакционноспособных групп и не обладает таким интенсивным межмолекулярным взаимодействием, как это имеет место в целлюлозе. При нагревании нейлона тепловое движение макромолекул возрастает, они сдвигаются со своих мест, в результате чего нейлон плавится. В атмосфере азота нейлон плавится при 263°, перлон и (полиуретан) — при 175—180°, терилен — при 249°. На воздухе терилен и нейлон плавятся, однако, при 248—250°. [c.101]

    Следующей процедурой является дубление. Дубление значительно повышает сопротивление кожи набуханию в воде или в растворах кислот, а также действию энзимов. Дубители реагируют с полипептидными цепями белков кожи и образуют новые поперечные связи, стабилизирующие кожу. Обычно применяют хромовые дубители, растительные или синтетические дубители, а также их комбинации. Мерой устойчивости кож после дубления является температура, при которой нагретая в воде кожа сморщивается (так называемая гидротермическая устойчивость). [c.335]

    Поскольку кванты ультрафиолетового света обладают энергией, достаточной для отрыва атомов водорода от молекул синтетических полимеров, а также в связи с тем, что, как было показано [418—420[, ультрафиолетовое облучение может приводить к сшиванию и инициированию прививки высокомолекулярных полимеров, можно было бы предполагать, что в белках также могут образовываться поперечные связи под действием ультрафиолета. Однако в противоположность этому предположению белки, особенно кератины, которые сравнительно богаты цистином, легко разрушаются при действии ультрафиолетового излучения. [c.439]

    Другое семейство близкородственных белков образует несколько сериновых эстераз. К ним относятся протеолитические ферменты химотрипсин, трипсин, эластаза и тромбин. На рис. 2.19 сравниваются аминокислотные последовательности этих четырех белков. Сравнение выявляет соответствие не только в аминокислотной последовательности, но и в расположении многих дисульфидных поперечных связей, а также в локализации очень реакционноспособного остатка серина, который, как известно, находится в активных центрах всех этих ферментов. Можно предположить, что такое сходство первичных структур должно приводить к сходству их третичной структуры. Именно это и представлено на рис. 2.20, где изображены три из четырех упомянутых выше белков. Следует, однако, обратить внимание на то, что, несмотря на сходство последовательностей, структуры и механизмов функционирования, позволяющее рассматривать эти четыре белка как родственные в эволюционном смысле, все же считать их тождественными никак нельзя. Различием аминокислотных последовательностей, и особенно пространственных структур, можно объяснить некоторые особенности субстратной специфичности этих белков и механизма их действия. [c.79]

    Таннины типа сложных эфиров. — Чернильные орешки представляют собой наросты на тканях растений, образующиеся в результате заболевания, вызванного насекомыми паразитами. Насекомые прокалывают кору и листья и откладывают там яйца личинки живут в них и питаются образующимися наростами. Наросты на дубовых листьях напоминают орехи и называются дубильными или чернильными орешками. Из них водой и 5влекают около 50% аморфного, сильно вяжущего вещества, названного таннином или танниновой кислотой благодаря специфическому свойству — способности дубить кожу (англ. tan —дубить). В шкурах содержится нерастворимый в воде коллаген, из которого получается клей. Многофункциональные таннины образуют поперечные связи между соседними цепями белка, в результате чего из шкуры получается кожа. Таннины выделяют также из сухих растертых в порошок листьев кустарника сумаха, листьев чая, дубовой коры, конского каштана и т. д. [c.353]

    Полезно рассмотреть свойства волокон, макромолекулы которых слабо ориентированы, и сравнить их со свойствами высокоориентированных волокон. Типичными волокнами с малой ориентацией макромолекул являются искусственные белковые волокна. Эти волокна сформованы из природных белков, называемых глобулярными, т. е. имеющих молекулы, приближающиеся по форме скорее к сфере, чем к вытянутой линии. В процессе растворения белка, продавливания его раствора через отверстия фильеры в осадительную ванну, последующей вытяжки и дубления происходит выпрямление макромолекул белка, их ориентация и образование поперечных связей между макромолекулами. Однако даже после этих операций искусственные белковые волокна, например ланиталь, меринова, ардиль и викара, продолжают оставаться слабоориентированными. В этом отношении они напоминают шерсть, макромолекулы которой также слабо ориентированы. Рассмотрим основные свойства таких волокон. [c.86]

    Исследование срезов свежей (замороженной) ткани непосредственно, без предварительной обработки, мало что дает, поскольку большая часть атомов в клетке обладает низким атомным весом и рассеивает электроны слабо и в одинаковой степени. Следовательно, ультрасрезы необходимо окрасить атомами с высоким атомным весом, например обработав их перманганатом калия. Ткани следует также зафиксировать, чтобы предотвратить разрушение клеточных структур в процессе обезвоживания и заливки в пластмассу. Фиксирующие вещества (например, формальдегид) реагируют с аминогруппами и другими группами белков и нуклеиновых кислот. Некоторые белки при этом преципитируют, оставаясь фиксированными на своих местах, а протеолитические ферменты, которые могли бы существенно нарушить тонкую структуру клетки, инактивируются. Широко используется также глутар-альдегид (пятиуглеродный диальдегид)— прекрасное фиксирующее средство, образующее поперечные связи между моле- [c.19]

    Боковые группы влияют на свойства белков не только вследствие их кислых или основных свойств большую роль играют также другие свойства этих групп, а также размер и форма. Например, постоянная волнистость волос зависит от изменений в дисульфидных (—8- —)поперечных связях из-за наличия цистеиновых боковых цепей основное различие между шелком и шерстью обусловлено различием в небольших боковых группах (в фиброине шелка преобладают Н- и СНд-группы) прочность сухожилия связана с плоским строением пирролидинового цикла и способностью ОН-группы оксипро-лина к образованию водородных связей. Замена одной глутаминовой боковой цепи в молекуле гемоглобина (всего содержится 300 боковых цепочек) на цепь, валина является, по-видимому, причиной заболевания серповидноклеточной анемией, приводящей к смертельным исходам. [c.1055]

    Очевидно, молекулы поликремневой кислоты присоединяются к белковой иленке сразу во многих точках. Если молекула белка, находясь в растворе, свертывается в спираль и ие мо- кет полностью распрямиться и плоско расположиться иа иоверхности еще до добавления в систему кремнезема, то в таком случае кремнезем образует поперечные связи в молекуле белка и тем самым препятствует дальнейшему развертыванию спирали белковой молекулы. Когда монослои желатина на иоверхиости раствора поликремневой кислоты оказываются сжатыми, то СНг-групиы пролииовых колец будут отталкиваться от поверхности. Это влечет за собой сближение пептидных груии, облегчая тем самым их связывание поперечными связями, образуемыми поликремневой кислотой. В результате такого процесса пленка становится жесткой. Монослои, состоящие из синтетических полиамидов (найлона), также испытывали подобное дубление [250, 251]. [c.1055]

    В своей монографии по пневмокониозу Холт [330] собрал много важных факторов 1) наблюдения относительно того, что поликремневые кислоты или коллоидный кремнезем денатурируют белки и проявляют щ1тотоксичность 2) полученные в экспериментах на мономолекулярных пленках доказательства того, что белковые монослои сильно адсорбируют поликремневую кислоту и тем самым постоянно изменяются и связываются поперечными связями 3) сведения о способности белковых монослоев на поверхности воды концентрировать кремневую кислоту путем ее адсорбции, а также стимулировать полимеризацию такой кислоты, когда общая концентрация кремнезема настолько низка, что в иных условиях полимеризация кремнезема была бы невозможна. [c.1075]

    Возможно, что сшивание молекул белков происходит главным образом путем окисления тиоловых групп с образованием межмолекулярных дисульфидных М остиков. Перестройка существующих внутримолекулярных дисульфидных связей в меж-молекулярные должна также вызывать агрегацию, но неизвестно, ускоряет ли облучение такие реакции. Каррол с сотрудниками [71] полагали, что образование поперечных связей происходит не только за счет возникновения дисульфидных мостиков, а, возможно, также в результате соединения бензольных колец тирозина и фенилаланина. Известно [72—74], что облучение насыщенных водных растворов бензола приводит к образованию дифенила как основного продукта реакции. [c.228]

    Трудно переоценить роль водородной связи. Об этом свидетельствуют такие данные, как аномально высокие диэлектрические постоянные СН3ОН, Н2О и H N по сравнению с диэлектрическими постоянными других жидкостей, молекулы которых имеют дипольные моменты того же порядка величины, что и первые ассоциация в жидкостях взаимная ориентация молекул во многих органических кристаллах, таких, как пурин и пиримидин (см., например, [34]) процесс прилипания обычной грязи к коже человека упорядоченное расположение поли-пептидных цепей в структуре белка [3] типа изображенной на рис. 13.5 поперечные связи в двойной спирали нуклеиновой кислоты и их значение для образования структуры генов, а также тот факт, что почти во всех биологических процессах на некоторой стадии возникают, по-видимому, водородные связи. [c.376]

    При изучении поперечных связей в молекуле белка (с целью установить его третичную структуру) приходится сталкиваться с таким затруднением, как возможнйсть образования ковалентных межмолеку-лярных связей. Этот процесс также можно контролировать с помощью гель-хроматографии [68]. [c.220]

    ЛИ, которую играют в поддержании структуры те или иные связи, различают несколько структурных уровней. Первичная структура белка определяется числом и последовательностью ковалентно связанных аминокислот. Полипептидная цепь благодаря водородным связям, образующимся между кислородными атомами карбонильных групп и азотными атомами амидных групп, приобретает вторичную структуру она может образовать спиральную конфигурацию (а-спираль) или конфигурацию так называемого складчатого слоя. Третичной структурой называют определенное пространственное расположение пептидной цепи, обусловленное взаимодействием между различными ее боковыми группами. В поддержании третичной структуры участвуют другие водородные связи, ионные связи и неполярные (гидрофобные) взаимодействия. Поперечные связи, соединяюище различные участки полипептидной цепи, могут быть и ковалентными таковы, например, дисульфидные связи, образующиеся при окислении SH-rpynn. И наконец, благодаря взаимодействиям нескольких полипептидных цепей могут возникать надмолекулярные агрегаты. Такое строение (при котором белок состоит из определенного числа полипептидных цепей, или субъединиц) называют четвертичной структурой. При физиологических условиях белок находится в водной фазе. Поэтому между белками и диполями воды тоже имеет место взаимодействие. Полярные группы гидратированы. Факторы, вызывающие изменение заряда белков (концентрации ионов Н, Са , Mg , К и др.), неизбежно влияют также на степень гидратации, а тем самым и на степень набухания белков. [c.43]

    ДУБЛЕНИЕ — обработка кожи дубящими веществами, к-рые в процессе Д. распределяются в обрабатываемом материале и частично связываются с его функциональными группами (—NH2,—СООН и др.). Д. применяется также при обработке желатины для фотографич. целей (см. Дубление фотографическое) и казеина (см. Пластики белковые). При Д. между структурными элементами белка и молекулами дубителя образуются различ]1ые виды связи водородные, электровалентн ые и ковалентные. В результате Д. волокна коллагена связываются ( сшиваются ) молекулами дубителя в структуру о большим числом поперечных связей. При ЭТ01Л кожный покров животного превращается в выдубленную кожу, для к-рой характерна совокупность след, свойств уменьшение деформируемости обводненной дермы сохранение пористости кожи в процессе сушки уменьшение склеиваемости повышение прочности при растяжении уменьшение влагоемкости при набухании в воде повышение термич. стойкости коллагена и его стойкости к химич. и ферментативным воздействиям уменьшение общей упорядоченности структуры коллагена. [c.606]

    К первичной структуре относят (как минимум) число, конфигурацию и последовательность расположения аминокислотных остатков в полипептидной цепи. Помимо этого, к первичной структуре иногда можно отнести также ковалентные поперечные связи, соединяющие различные полипептидные цепи или ограни-чивающи к нфо >мацш -какой лнба-одной цепи. Дростетическне— группы сложных белков (коферменты, гемогруппы, фосфатные, углеводные и ацетильные группы, а также некоторые другие, на- [c.270]

    Поликапролактам —[—(СНг)5С0КН—]—n образует поперечные связи с выходом по крайней мере 0,35 поперечной связи на 100 эв, а амидные группы распадаются, о чем говорит образование аминогрупп с G = 0,6 [МП] (см. также белки, стр. 251). [c.198]

    Помимо ассоциаций боковых неполярных радикалов и дисульфидных мостиков в создании третичной структуры могут принимать участие и другие ковалентные связи — например, фосфо-эфирная. Показано, что в пепсине и а-казеине, встречаются ортофосфатные связи, соединяющие, вероятно, остатки серина и треонина доказано также наличие фосфоамидной поперечной связи (О—РОг—NH—) в а-казеине, которая присоединена, по-видимому, к остаткам лизина и аргинина. Возможно, что подобного рода связи имеют место и в фосфопротеинах. Однако для других белков они не имеют существенного значения. [c.94]

    И аминогрупп, которые при повторном воссоединении образуют неспсцифичные поперечные связи между цепями ДНК и гистона (или с добавленным белком или нуклеиновой кислотой), давая комплексы переменного состава и неопределенной структуры [5051. Агрегация может также происходить в результате объединения гистонов из различных нуклеопротеидных частиц, что приводит к образованию геля [507]. Изучение метахроматизма, возникающего в окраске толуидинового голубого под действием нуклеогистона из зобной железы теленка, имеющего общий отрицательный заряд, равный приблизительно 7 заряда ДНК, показало, что в цепи полимера встречаются несвязанные фосфатные группы [504], по-вндимому из-за отсутствия в линейной частице целой субъединицы гистона. [c.449]

    Эти смолы и соответствующие им амберлиты ША-400 и Ш-120 употребляются чаще в виде смесей в целях обессоливания белковых растворов, чем для истинных хроматографических операций [35, 36]. В тонкоизмельченном виде эти смолы иногда дают хорошее хроматографическое разделение, однако они обладают одним серьезным недостатком — низкой емкостью. Боман [37] систематически исследовал смолу дауэкс 2 (200—400 меш), имеющую 8—10% поперечных связей, и выяснил ряд интересных фактов. Перед использованием смолу промывают 1 н. раствором НС1. После насыщения смолы буфером при pH 7,3 на ней адсорбируют белки сыворотки при низкой ионной силе (0,02—0,04 М) и элюируют путем ступенчатого повышения молярпости буферного раствора. При использовании катионного буфера трис-НаХ pH регулируется лучше, чем при использовании анионного буфера, например ацетатного. Емкость дауэкс 2 при pH 7,3 для сывороточного альбумина составляет 0,5 лгг/лгуг смолы, поэтому для разделения следует использовать колонку, близкую к пределу насыщения. Как и при работе с фосфатом кальция, индивидуальный блок может элюироваться в виде нескольких небольших пиков, соответствующих разности между теми количествами белка, которые насыщают смолу при данных концентрациях солей. Боман нашел, что порядок элюирования белков сыворотки с дауэкс 2 отличается не только от порядка распределения их при электрофорезе, но также отданных, полученных при разделении на [c.232]

    Белки также относятся к амфотерным высокомолекулярным электролитам, но благодаря относительно малой плотности расположения зарядов, более слабым электростатическим взаимодействиям и наличию свернутых молекул с множеством внутримолекулярных водородных связей они обладают рядом характерных особенностей по сравнению с типичными линейными иолиэлектролитами. Трехмерные полиэлектролиты, т. е. сетки линейных молекул полиэлектролитов, соединенных химическими поперечными связями (рис. 100), широко применяются в хроматографии в качестве ионообменных адсорбентов. [c.235]

    Реакционная способность одной и той же функциональной группы в различных белках может быть неодинаковой в зависимости от природы последних и от описанного выше типа экранирования. Большинство исследований по модификации белка, представлявших интерес вследствие зависимости между структурой белка и его биологической активностью или функцией, проводилось на растворимых глобулярных белках. Однако было проведено также большое количество работ по окислению фибриллярных белков (например, кератина шерсти) и по введению групп, создающих поперечные связи в этих веществах. Исследование фибриллярных белков ограничено неприменимостью критериев идеальных реакций и отсутствием у этих белков биологической активности. Таким образом, для химика, исследующего белки, понятие о доступности функциональных групп связывается главным образом с исследованиями, которые проводятся на растворимых корпускулярных белках. Нерастворимые фибриллярные белки реагируют гораздо труднее. Александер и сотрудники [40] показали, что число карбоксильных групп в шерсти, доступных для этерификации с помощью спиртов, изменяется в зависимости от молекулярного веса последних. Не все карбоксильные группы шерсти доступны даже для таких небольших молекул, как молекулы метилового спирта, который, согласно ранее проведенным исследованиям Френкель-Конрата и [c.276]

    Несмотря на то, что при введении в белок или отщеплении от него какой-либо группы следует ожидать лишь незначительного изменения молекулярного веса белка, вторичные процессы могут привести к димеризации, агрегации или диссоциации. Выше уже были описаны некоторые примеры, а именно 1) влияние малонилирования или образования меркаптида на сывороточный альбумин и 2) этерификация инсулина, в результате которой происходят диссоциация и вторичная агрегация. Следует отметить также полимеризацию относительно нерастворимой, но в значительной степени дезаминированной фракции А яичного альбумина. Кроме того, измерениями осмотического давления [118] было показано, что обработка сывороточного и яичного альбуминов формальдегидом ведет к появлению межмолекулярных поперечных связей. Тот факт, что для белковых производных почти не проводились измерения формы молекул, также следует подчеркнуть особо, поскольку изменение асимметрии является [c.344]

    Значение сил, которые стабилизуют третичную структуру рибонуклеазы, иллюстрируется также экспериментами несколько иного рода. Возможен избирательный разрыв пептидной связи, соединяющей аланиль-ный остаток в положении 20 с серильным остатком, находящимся в положении 21. При этом молекула фермента расщепляется па короткую пептидную цепь ( 8-пептид ) и остаточную структуру, содержащую все дисульфидные поперечные связи ( 8-белок ). Обнаружено, что каждый в отдельности компонент является нативным, однако ферментативная активность почти полностью восстанавливается, если смешиваются стехиометрические количества двух компонентов, даже при очень сильном разбавлении [401]. Эти данные согласуются с константой ассоциации 8-пептида с 8-белком, составляющей по меньшей мере 2-10 л1молъ. Эти результаты показывают, что преимущества, свойственные специфическому складыванию нативного фермента, настолько сильно зависят от взаимодействия боковых цепей, соединенных с полипептидным скелетом, что пространственное расположение может быть сохранено после разрыва цепи. Было даже обнаружено, что ферментативная активность в основном сохраняется, если в 8-пептиде изъять семь аминокислотных остатков (с 14 по 20). Отсутствие этого довольно длинного отрезка основной цепи, по-видимому, не вызывает изменений основных особенностей третичной структуры, характерной для нативного белка [402, 403]. [c.139]

    Взаимодействие химотрипсина [80] с сероуглеродом также приводит к превращению аминогрупп белка в дитиокарбаматные группы, причем число и характер вступающих в реакцию аминогрупп зависят от условий реакции. В каждой молекуле химотрипсиногена содержится 14 свободных аминогрупп (13 е-аминогрупп и одна а-аминогруппа) [80]. При pH 10,3 и температуре 5° реакция с сероуглеродом, как было найдено, не заканчивается через 6 суток. При более высоких концентрациях белка и прочих равных условиях через 7 суток в реакцию вступают лишь 10 или И аминогрупп из 14 теоретически возможных. При pH 7,5 и температуре 25° через 31 час с сероуглеродом прореагировали лишь 3,2 аминогруппы. Во второй серии опытов, проведенной с химотрипсиногеном, инсулином п Р-лактоглобулином при pH 7,5—7,9, было найдено, что е-аминогруппы этих белков хотя и медленно, но в заметной степени реагируют с сероуглеродом. При pH 6,9 происходит замещение только в одной аминогруппе, которая, как было найдено, находится в а-положении. Превращение 13 е-аминогрупп химотрипсиногена в гуанидиновые группы путем реакции с О-метилизомочевиной и последующее взаимодействие гуани-дированного белка с сероуглеродом при pH 7,3 в течение 1 суток при 25° приводит к получению производного, содержащего один остаток дитио-карбаминовой кислоты в молекуле. При pH 3,0 это производное отщепляет сероуглерод, образуя исходный модифицированный белок. Методом седиментационного анализа было показано, что монодитиокарбаматное производное при pH 8,7 гомогенно и не содеряшт новых поперечных связей. Состав этого производного был установлен путем непосредственного анализа на содержание дитиокарбаматной группы, проведенного двумя разными методами. [c.373]

    По изменению вязкости растворов и седиментационных характеристик растворенных макромолекул при ультрацентрифугировании, а также пользуясь другими физическими методами определения молекулярных весов белка в растворе, можно наблюдать за протеканием реакций образования и расш епления поперечных связей на разных стадиях таких процессов. [c.398]

    В реакции с шерстью вводили множество различных полифункциональных алкилируюш,их средств, в том числе упоминавшиеся выше в разделе, посвященном дисульфидному расширению. Во всех случаях шерсть перед сшиванием не восстанавливали. Некоторые типичные полифункцио-нальные реагенты, применявшиеся для этой цели, а также свойства шерсти, модифицированной действием этих веществ, приведены в табл. У1-38 [243]. Все полученные производные характеризовались пониженной растворимостью в щелочи и меньшей склонностью к усадке. Этерификация шерсти до сшивания [243] не препятствовала протеканию реакций образования поперечных связей с другой стороны, ацетилированная шерсть не реагировала с указанными сшивающими агентами. Эти данные показывают, что в реакции образования поперечных связей при действии полифункциональных алкилирующих средств участвуют аминогруппы белка это, однако, не исключает возможности частичного участия в обсуждаемой реакции карбоксильных или гидроксильных групп, если они не были защищены до проведения алкилирования. [c.416]


Смотреть страницы где упоминается термин Поперечные связи белках также: [c.381]    [c.119]    [c.78]    [c.78]    [c.119]    [c.91]    [c.415]    [c.307]    [c.606]    [c.359]    [c.396]    [c.403]    [c.409]   
Основы биохимии Т 1,2,3 (1985) -- [ c.0 ]




ПОИСК







© 2025 chem21.info Реклама на сайте