Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Коэффициенты массоотдачи диффузии

    Ус/Оа диффузионный критерий Прандтля Р , Д и - коэффициенты массоотдачи, диффузии целевого компонента и кинематической вязкости сплошной среды с1 - диаметр капли - относительная скорость движения капли и сплошной жидкости  [c.460]

    Это зфавнение показывает, что положение поверхности химической реакции меняется в зависимости от соотношения коэффициентов массоотдачи (диффузии) и концентраций реагентов в объеме соответствующих фаз. Когда [c.197]


    Коэффициенты массоотдачи и г характеризуют одновременный перенос вещества за счет молекулярной и конвективной диффузии и равны тому количеству диффундирующего компонента, которое передается в расчете на единицу межфазовой поверхности в единицу времени при единице движущей силы. Как видно из уравнения (111.146), последняя может выражаться по-разному. [c.211]

    Отметим, что линейная связь между частным коэффициентом массоотдачи и коэффициентом диффузии не подтверждается экспериментальными данными. Для границы раздела жидкость — жидкость или жидкость — газ показатель степени при коэффициенте диффузии близок к 0,5. Однако такого вида зависимость может быть достигнута за счет определенного выбора толщины пленки. Например, щироко используемый в процессах горения метод приведенной пленки, представляющий собой модификацию пленочной теории, дает 0,5 для показателя степени при коэффициенте диффузии (см. раздел 6.2). [c.173]

    Несмотря на ошибочность допущения о независимости толщины пленки от коэффициента диффузии, приводящего к линейной зависимости между коэффициентом массоотдачи и коэффициентом диффузии, пленочная теория сыграла положительную роль в развитии массообменных процессов. Идеи, связанные с особой ролью тонких пленок и наличием равновесия на границе раздела фаз, а также вывод о существовании формул аддитивности фазовых сопротивлений, широко использовались в дальнейших исследованиях. [c.173]

    Как следует из соотношения (4.15), пенетрационная теория приводит к зависимости, в которой частный коэффициент массоотдачи определяется величиной, пропорциональной корню квадратному из коэффициента диффузии, что качественно согласуется с экспериментальными данными. [c.174]

    Кишиневский [228, 229], полагая, что массоперенос в пленке осуществляется путем турбулентной диффузии и что коэффициент диффузии в пленке постоянен, получил для коэффициента массоотдачи зависимость к = 2 у/(где 0-,. - коэффициент турбулентной диффузии), аналогичную формуле Хигби. Время контакта фаз Кишиневский предлагал определять для одиночных пузырьков как время прохождения пузырьком расстояния, равного его радиусу, а в распылительных колоннах — величиной времени между столкновениями капель друг с другом и о стенку. [c.174]

    Ключевой задачей теории является определение степени затухания коэффициентов турбулентного обмена с приближением к межфазной границе. Недостаточная разработанность теории турбулентности вообще и особенно в применении к системам жидкость—газ не позволяет пока сделать это строго, исходя лишь из гидродинамических соображений. Однако количественная оценка характера затухания возможна на основе надежных экспериментальных данных о зависимости коэффициента массоотдачи от коэффициента молекулярной диффузии. Показатели степени в законе затухания коэффициентов турбулентного обмена и в зависимости к от Оа связаны простым соотношением. Поэтому выявление характера влияния О а на ки по выражению Д. А. Франк-Каменецкого позволяет как бы физико-химически зондировать пограничный слой. В частности, для свободной границы жидкость-газ, как будет показано ниже, многочисленными экспериментальными работами в большинстве практически важных случаев установлена пропорциональная зависимость между к и коэффициентом молекулярной диффузии в степени 0,5. Это соответствует полученным на основании некоторых допущений предсказаниям основанным на квадратичном законе затухания. Доп. пер. [c.101]


    Кинг рассмотрел возможность интерпретации суммарного переноса вещества как результата комбинированного воздействия молекулярной и вихревой диффузии, причем последняя пропорциональна некоторой степени п расстояния от поверхности. При этом коэффициент массоотдачи может быть пропорционален коэффициенту диффузии Д в степени от О до 1 (в соответствии со значением ). На основе модели спокойной поверхности Кинга получено выражение для содержащее два параметра, отражающих гидродинамические [c.102]

    Значения кд для других газов при тех же условиях могут быт ь вычислены в соответствии с изложенным ниже (см. раздел 1Х-1-1). Кажется наиболее вероятным, что коэффициенты массоотдачи в газовой фазе изменяются пропорционально квадратному корню из коэффициента диффузии абсорбируемого газа, что и следует учитывать при внесении соответствующих поправок в получаемые значения кд. [c.180]

    Коэффициент массоотдачи в жидкой фазе обычно изменяется с вязкостью жидкости не только вследствие связанного с этим изменения коэффициента диффузии, но и из-за влияния вязкости на гидродинамическую обстановку. Примеч. пер. [c.232]

    Коэффициенты массоотдачи в порах и твердом материале находят из соответствующих коэффициентов диффузии с помощью соотношений [25]  [c.66]

    В этом случае внутренний коэффициент массоотдачи Р = Рп- Уравнение (111.87) справедливо для любой изотермы адсорбции. Если же внутреннее сопротивление зависит как от диффузии в порах, так и от диффузии в сорбенте или на его внутренней поверхности, то строгая связь между коэффициентами массоотдачи и массопередачи существует лишь для линейной изотермы адсорбции. Она выражается уравнением [25]  [c.66]

    Рассчитав коэффициенты молекулярной диффузии бензольных углеводородов I масле и газе Г)у (см. раздел 1.6), вычислим коэффициенты массоотдачи  [c.111]

    Рассчитав коэффициенты молекулярной диффузии в жидкой Ох и паровой Оу фазах (см. раздел 1.4), вычисляем коэффициенты массоотдачи. [c.132]

    Расчет экстракционных колонн часто проводят на основе коэффициентов массоотдачи для свободно осаждающихся одиночных капель. Такой метод расчета в наибольшей степени применим к распылитель, ным и тарельчатым колоннам, но на практике используется и для колонн других типов. Коэффициенты массоотдачи как в сплошной, так и в дисперсной фазе зависят от размеров капель. Для мелких капель, ведущих себя подобно жестким сферам, внутри которых массоперенос осуществляется лишь за счет молекулярной диффузии, коэффициенты массоотдачи можно рассчитать по уравнениям [8, 9]  [c.140]

    В системе жидкость — жидкость лимитирующее сопротивление реакционной фазы — явление чрезвычайно редкое. Реакция, как правило, протекает в сплошной фазе. Если коэффициенты молекулярной диффузии переходящего компонента в фазах не сильно отличаются по величине, то коэффициент массоотдачи в сплошной фазе в 6—10 раз больше, чем коэффициент массоотдачи в дисперсной фазе [6]. Лимитирующее сопротивление сплошной фазы в этих условиях имеет место при величине коэффициента распределения <0,1. Если при этом учесть увеличение скорости массопередачи в сплошной фазе под воздействием химической реакции, то становится очевидным, что лимитирующее сопротивление реакционной фазы может иметь место лишь при очень малых значениях коэффициента распределения (г ) 10 ). Столь низкие значения коэффициентов распределения в системе жидкость — жидкость встречаются сравнительно редко. [c.227]

    Выражение коэффициента массоотдачи, полученного из данных теории пенетрации, отличается от выражения по формуле (1-32). По формуле (1-86) коэффициент массоотдачи прямо пропорционален корню квадратному из коэффициента диффузии и обратно пропорционален корню квадратному из времени диффузии. В начальный момент, когда т =0, к =оо, а с увеличением времени процесса коэффициент к уменьшается. Для коротких промежутков времени диффузии коэффициент массоотдачи, согласно этой теории, может оказаться больше, чем для установившейся диффузии [см. формулу (1-32)]. [c.74]

    Коэффициент массоотдачи в обобщении Данквертса зависит от коэффициента молекулярной диффузии в степени 0,5, как и в теории пенетрации, что следует из принятия обеими теориями одного и того же вида неустановившейся диффузии. Данквертс не предложил ни уравнений, ни экспериментальных методов для определения коэффициента /, что исключает возможность широкого применения его теории. [c.75]

    Ячейки с двумя совместно вращающимися мешалками применяли Гордон и Шервуд [39]. Выводы они сделали, исходя из предположения, чтс коэффициенты массоотдачи зависят от коэффициента диффузии. Для исследованных систем установлено, что сопротивление фаз аддитивно. [c.83]

    Другая теория, весьма близкая к взглядам Нернста, была предложена-Лэнгмюром [2]. Для поверхности раздела твердое тело — жидкость Лэнгмюр также постулировал неподвижность пленки, в которой сосредоточено основное сопротивление массопередаче. Для систем жидкость — газ он предполагал лищь отсутствие относительного движения жидкостной и газоЬой пленок, допуская при.этом возможность строго ламинарного движения (с однородным профилем скоростей) в направлении, параллельном поверхности раздела. Это предположение не изменило основных выводов пленочной теории. Х отя гипотеза о неподвижных пленках и вытекающий из нее вывод о линейной зависимости между коэффициентами массоотдачи и молекулярной диффузии оказались неверными, пленочная теория сыграла пoлoжиteльнyю роль в развитии представлений о мас-сообмене. Предположение об особом значении процессов, происходящих в тонком слое вблизи поверхности раздела фаз, допущение о наличии термодинамического равновесия на границе раздела фаз, а также вывод этой теории об аддитивности диффузионных сопротивлений — в большинстве случаев сохраняют свое значение и в настоящее время. [c.169]


    Решение уравнения (16.7) совместно с краевыми условиями, выражающими постоянство концентрации на межфазной границе и вдали от нее, приводит к отедующей связи между коэффициентом массоотдачи k п коэффициентом молекулярной диффузии А о что эквивалентно St S .  [c.173]

    Понимая, что теория проницания в своем первоначальном виде непригодна для описания массообмена при турбулентном движении фаз, Коларж [29, 30] предпринял попытку связать время контакта т с характеристическими параметрами турбулентности в потоке, обтекающем твердую поверхность. Основной постулат теории Коларжа состоит в допущении, что перенос массы и тепла с твердой поверхности в объем лимитируется сопротивлением турбулентных пульсаций масштаба Яо, равного внутреннему масштабу турбулентности (т. е. такому критическому размеру турбулентных пульсаций, при котором начинают сказываться вязкие силы). Если предположить, что турбулентные вихри масштаба вплотную подходят к стенке и что перенос внутри таких вихрей осуществляться посредством нестационарной молекулярной диффузии, то для коэффициента массоотдачи получится выражение  [c.175]

    Размерность [м час],кг [молъ1м час] и к1-" [моль м" час ат. Коэффициент массоотдачи характеризует одновременный перенос вещества за счет молекулярной и конвективной диффузии и равен тому количеству диффундирующего компонента, которое передается в расчете на единицу межфазовой поверхности в еди- [c.72]

    Если диффундирующее вещество слабо растворимо в жидкой среде, то параметр т должен быть велик, ибо при равновесии весьма малая концентрация в жидкой фазе должна соответствовать большой концентрации в газе. Член 11т к в (11.43) становится пренебрежимо малым, и общий коэффициент массопередачи Кх практически совпадает с коэффициентом массоотдачи ж-В этом случае главное сонротивление диффузии оказывается ншдкостью и поэтому говорят, что ход массопередачи контролируется пограничным слоем на жидкостной стороне межфазовой поверхности. Если же диффундирующее вещество хорошо растворимо в жидкой среде, то параметр т должен быть мал, ибо нри равновесии уже небольпшя концентрация а в газовой фазе соответствует весьма больпкш концентрации его в жидкости. Член т кт в (11.42) становится пренебрежимо малым, и общий коэффициент массопередачи Ку практически совпадает с коэффициентом массоотдачи k . В этом случае главное сопротивление диффузии оказывается уже газом и поэтому говорят, что ход массопередачи контролируется пограничным слоем на газовой стороне межфазовой поверхности. [c.76]

    Таким образом, в этом случае сопротивление диффузии определяет скорость превращения, и процесс проходит в диффузионной области. Когда же коэффициент массоотдачи О/г велик по сравнению с константой скорости химической реакции к D z к), уравнение (VIII-172) приобретает вид  [c.248]

    Тур и Марчелло [231] рассматривали пленочную и пенетращюнную теории как крайние случаи процесса переноса, для которых в формулах коэффициента массоотдачи показатель степени при коэффициенте диффузии принимает предельные значения, равные 1 и 0,5, соответственно. Они считали, что в реальных условиях значения показателя степени могут колебаться между этими величинами. Предложенная ими пленочно-пенетрационная модель также основана на идее обновления поверхности турбулентными вихрями, но с более гибким учетом периода обновления. При малых временах пребывания вихря на поверхности процесс массопередачи нестационарен (пенетрационная теория), тогда как при больших временах успевает установиться постоянный градиент концентраций и наблюдается стационарный режим (пленочная теория). Для произвольных значений времен обновления модель учитьгеает оба механизма массопередачи — стационарный и нестационарный. Математическая формулировка пленочно-пенетрационной модели сводится к решению уравнения (4.12) при условии, что постоянное значение концентрации задается не на бесконечность, как в модели Хигби, а на конечном расстоянии от поверхности тела. Величина этого расстояния, как правило, неизвестна, и не указаны какие-либо надежные модели ее определения. [c.175]

    В последнее время появились работы, в которых при экспериментальном определении зависимости коэффициента массоотдачи в жидкой фазе от коэффициента диффузии значения последнего изменялись примерно на порядок. Изменения же величин Оа на полпорядка стали обычными в практике подобных работ 5 последних лет. Кроме того, значительно расширились и сведения [c.107]

    У-9-5. Критерий мгиовеииости реакции. Все реакции протекают с конечными скоростями, и понятие мгновенной реакции является идеализированным. Поэтому требуется какой-то общий критерий для оценки того, может ли данная реакция считаться мгновенной. Вообще говоря, мгновенности протекания реакции способствуют высокая удельная скорость реакции растворенного газа и низкое значение коэффициента массоотдачи для физической абсорбции. В таких условиях скорость процесса полностью лимитируется диффузией реагентов, а скорость реакции достаточна для поддержания равновесия во всех точках раствора кинетика реакции при этом не играет существенной роли. [c.135]

    Возможно использование моделей, описанных в главе IV, в которых каждый элемент поверхности жидкости экспонируется газу до замены его жидкостью из основной массы в течение одинакового промежутка времени 0. В таких установках точно моделируется механизм абсорбции, постулируемый моделью Хигби. При этом, еслн коэффициент массоотдачи в жидкой фазе для газа с коэффициентом диффузии О А равен то продолжительность экспозиции в модели должна быть 40А1(пк1). Колонны с орошаемой стенкой, обеспечивающие продолжительность контакта порядка 0,5 сек, подходят для моделирования насадочных колонн, а ламинарные струи с контактом, равным нескольким тысячным секунды, — для моделирования барботажных тарелок. [c.176]

    Т и б и л о в С. Г., Р а м м В. М., Б а р а н о в а А. Р1., Техн. и эконом, информ. НИУИФ им. Я. В. Самойлова, Л 1—2, 81, 89, 93 (1966). Исследование абсорбции хорошо растворимых газов в дисковой колонне. Исследование влияния концентрации олеума на абсорбцию серного ангидрида в дисковой колонне. Влияние коэффициента диффузии на коэффициент массоотдачи в газовой фазе в насадочной колонне. [c.276]

    Обычно каталитические эксперименты проводят на лабораторных микрокаталитических установках при стационарном и нестационарном протекании процессов диффузии и адсорбции реактантов при этом одним из наиболее перспективных способов исследования физических свойств катализаторов и адсорбентов является экспрессный импульсный хроматографический метод, позволяющий в ограниченные промежутки времени для значений технологических параметров, близких к промышленным, получить (в частности, для MOHO- и бидисперсных моделей зерен катализаторов) важную информацию о численных величинах их констант, таких, как эффективные коэффициенты диффузии в макро- и микропорах, константы скорости адсорбции, константы адсорбционно-десорбционного равновесия, коэффициенты массоотдачи. Для оценки последних применяются метод моментов, метод взвешенных моментов, методы, использующие в своей основе преобразования Лапласа и Фурье и т. д. Однако все они обладают существенными недостатками применимы только для линейно параметризованных моделей, не позволяют провести оценку точности полученных параметров и оценку точности прогноза по моделям, не допускают проведение планирования прецизионного и дискриминирующего эксперимента. Отметим также, что при их практическом исполь- [c.162]

    Найдем коэффициент массопередачи при этой скорости газа. Десорбция проводится при давлении, в 10 раз меньшем давления адсорбции. Поэтому плотность газа при десорбции можно считать в десять раз меньшей, а коэффициент диффузии — в десять раз большим, чем при адсорбции. Следовательно, имеем Ру = = 0,08263 кг/м , Dy = 0,735 mV . Расчет внутреннего коэффициента массоотдачи по уравнениям (III.83) и (III.85) дает Рх = Рп = 0,749 см/с. Определив из уравнений (111.82) и (III.91) внешний коэффициент массоотдачи фу = 7,73 см/с) и поправку для учета продольного перемешивания (Рдрод = 2,98 см/с), находим коэффициент массопередачи при скорости газа 0,213 м/с (/Су = 0,556 см/с). Следовательно, при 1/7 = 0,75 общее число единиц переноса для всего слоя равно  [c.73]

    Теория Данквертса (обновления поверхности). Данквертс [18] принимает вслед за Хигби неустановив-шийся процесс диффузии (пенетрацию) ввиду непрерывного завихрения и обновления поверхности. Предполагая, что средняя скорость образования новой поверхности на единицу поверхности контакта фаз определяется постоянной дробной величиной / (в м 1м -сек),г замена элемента этой поверхности не зависит от времени ее существования, коэффициент массоотдачи можно представить зависимостью, отличающейся от ранее выведенных  [c.75]

    Теория Кишиневского. Она отличается от теории Данквертса тем, что наряду с коэффициентом молекулярной диффузии О вводится коэффициент конвективной диффузии О. По Кишиневскому [59], коэффициент массоотдачи опредепяется следующим уравнением  [c.76]

    Для определения коэффициентов массоотдачи применяются ди-фузионные ячейки [112, 113] с неподвижными жидкостями. Лучшее приближение к рабочим условиям в экстракционных аппаратах даютячейки с перемешиванием жидкости, так как в них можно определить влияние турбулентности на массопередачу [22, 48, 54]. В таких ячейках Дэви [22] исследовал скорость диффузии различных солей (хлорида калия, бромида калия, иодида калия, натрия, лития [c.79]

    Примечание, г — линейная скорость подвижной фааы а — коэффициент теплоотдачи Т т — температура стенки реактора й — диаметр реактора га — поверхность раздела фаз Т , с — температура и концентрация компонента на поверхности раздела фаз соответственно А — коэффициент массоотдачи Е — порозность слоя 1), эф и эф — аффективный коэффициент продольной и поперечной диффузии соответст 1енно Х эф и дф — эффективный коэффициент продольной и поперечной теплопроводности соответственно 1) , и Одф— эффективный ког<фициент продольной диффузии для подвижной ( азы и в грануле катализатора соответственно Хд и Хэф— [c.140]

    Существующие теории массопередачи ставят своей целью дать выражения для коэффициентов массопередачи или представить их как функции частных коэффициентов массоотдачи по каждой из фаз. Сюда относятся двухпленочная теория Льюиса и Уитмена, в соответствии с которой предполагается, что на границе раздела фаз со стороны, каждой фазы образуются ламинарные пленки, в пределах которых сосредоточено основное сопротивление массопе-ренЬсу, а коэффициент массоотдачи пропорционален коэффициенту диффузии в первой степени. [c.343]


Смотреть страницы где упоминается термин Коэффициенты массоотдачи диффузии: [c.460]    [c.170]    [c.73]    [c.99]    [c.106]    [c.252]    [c.457]    [c.109]    [c.147]    [c.164]    [c.213]    [c.76]   
Процессы и аппараты химической технологии Часть 2 (2002) -- [ c.184 ]




ПОИСК





Смотрите так же термины и статьи:

Диффузия коэффициент диффузии

Коэффициент диффузии

Коэффициент массоотдачи

Массоотдача



© 2025 chem21.info Реклама на сайте