Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Свойства важнейших пластификаторов

    Свойства некоторых растворителей и разбавителей приведены в табл, 12—17, а свойства важнейших пластификаторов — в табл. 18—21. [c.176]

    СВОЙСТВА НАИБОЛЕЕ ВАЖНЫХ ПЛАСТИФИКАТОРОВ [c.563]

    Первый том двухтомного справочника (предыдущее издание вышло в 1967 г.) содержит важнейшие сведения о пластических массах, выпускаемых промышленностью Советского Союза (по состоянию на вторую половину 1973 г.). В нем даны показатели физико-механических, теплофизических, электрических и химических свойств важнейших полимеризацион-ных полимеров, рассмотрены технические требования к вырабатываемым на их основе пластмассам, области их применения и способы переработки в изделия.., 8 каждом разделе приведены сведения о технике безопасности при переработке данных полимеров и пластических масс на их основе. Описаны наиболее распространенные пластификаторы, стабилизаторы и клеи для полимеров. [c.2]


    Свойства важнейших растворителей и пластификаторов даны в справочной литературе. [c.88]

    Важным является также подбор пластификатора для того или иного пленкообразующего вещества. Особое значение это приобретает в случае производства пленок из триацетата целлюлозы. Приходится констатировать, что до настоящего времени не существует такой оптимальный пластификатор, который обеспечил бы формирование В триацетатной пленке высоких физико-механических свойств. Выбор пластификатора, а также оптимального количества его в составе раствора обычно осуществляют экспериментальной проверкой свойств пластифицированных пленок. [c.299]

    Вязкость — одна из важнейших физико-механических характеристик пластификаторов, влияющая как на пласто-эластические свойства смесей, так и на физико-механические свойства вулканизатов. Пластификатор, обладающий меньшей вязкостью, сообщает резинам меньшую твердость и большую эластичность. С увеличением вязкости пластификатора возрастают прочностные показатели вулканизаторов, относительное удлинение и теплообразование. [c.46]

    В конце книги даны три приложения в виде таблиц важнейшие синтетические лаковые полимеры и их свойства, основные пластификаторы и растворители для лаковых полимеров. [c.4]

    Кроме описанных выше пластификаторов, в производстве электроизоляционных лаков и компаундов применяется еще целый ряд дополнительных исходных материалов, к которым относятся активные разбавители, отвердители, катализаторы (инициаторы), ускорители (активаторы) и ингибиторы физико-химические свойства важнейших из них приводятся в табл. 3-7 и 5-7. [c.59]

    Процесс оксосинтеза для получения спиртов С,—С . Расширение объема и ассортимента полихлорвиниловых смол, намеченных к выпуску в текущем семилетии и за его пределами, вызвало увеличение потребности в эфирах-пластификаторах. Спирты С, jo, получаемые оксосинтезом, являются важнейшими составными компонентами эфиров-пластификаторов. Влияние характера спирта на свойства эфира, который в дальнейшем определяет [c.115]

    Обусловлено это тем, что именно в случае эластомеров высокая термодинамическая гибкость изолированных макромолекул сочетается со сравнительно малым межмолекулярным взаимодействием в полимере. Количественным выражением этого взаимодействия является плотность энергии когезии — величина, в случае жидкости численно равная энергии, необходимой для испарения 1 см вещества. Величина энергии когезии или непосредственно с ней связанного параметра растворимости б (см. стр. 33) является важной характеристикой полимера, от которой в значительной мере зависят способность его растворяться в тех или иных средах, степень совместимости полимеров друг с другом и с пластификаторами, температура стеклования, газо- водопроницаемость и целый ряд других свойств. [c.41]


    Высокомолекулярное соединение — важнейшая составная часть, скрепляющая все компоненты в одно монолитное целое и придающая смеси (композиции) пластичность, способность формоваться, а также электроизоляционные, антикоррозионные и другие важнейшие свойства. Для этого используются кроме синтетических полимеров эфиры целлюлозы, белковые вещества, асфальты и пеки. По составу пластмассы можно разделить на нена-полненные, представляющие собой чистые или с очень незначительными добавками полимеры, и наполненные пластики — смеси, содержащие наполнители, пластификаторы, красители, стабилизаторы, отвердители и другие добавки, равномерно распределенные в связующем — смоле. [c.213]

    Высшие хлорированные парафины ( js— ia и С22—С25) нашли практическое применение в ряде отраслей промышленности, в том числе и в производстве полимерных материалов, применяемых в строительстве. Они часто используются в качестве пластификаторов при производстве поливинилхлоридных мягких изделий различного назначения (материалы для полов, трубы и шланги, пленки и искусственная кожа и др.). С этой целью применяют жидкие хлор-парафины с углеродной цепью, содержащей 15—18 и 23—25 углеродных атомов (содержание хлора соответственно 46—53 и 40— 42%). Стоимость поливинилхлоридных изделий при этом снижается без снижения качества. Жидкие хлорпарафины, не ухудшая физических свойств, придают полимерам огнестойкие свойства и повышают их стойкость к действию бензина и других растворителей. Они используются для пропитки тканей, бумаги, брезента, древесины и многих других материалов. Такая обработка придает им не только огнестойкость, но и гидрофобные и погодоустойчивые свойства. Хлорпарафины широко используются и для изготовления химически стойких водо- и огнезащитных красок на основе некоторых полимеров. Все это имеет важное значение для строительной индустрии. [c.99]

    Очень важно установить, как изменяются свойства полимеров в тех случаях, в которых они эксплуатируются или сохраняются. Самопроизвольное изменение технически ценных свойств (прочности, эластичности и др.), происходящее в обычных условиях эксплуатации или хранения данного полимера или пластмассы, называют старением. Этим термином объединяются различные эффекты, вызываемые процессами, происходящими в полимере под действием кислорода воздуха, света, нагревания, радиации, механических факторов и пр. В пластифицированных полимерах такие эффекты могут вызываться, например, постепенным испарением пластификатора. В искусственно ориентированных полимерах они могут обусловливаться релаксационными изменениями строения, уменьшением степени ориентированности цепей и их кристалличности. [c.232]

    Влияние пластификатора на свойства поливинилхлорида. Из-за неуравновешенного строения макромолекула поливинилхлорида полярна. Это обусловливает наличие сильных межмолекулярных связей, прочно скрепляющих между собой макромолекулярные цепи, благодаря чему поливинилхлорид — материал жесткий и негибкий. Длй изготовления гибкого и эластичного материала прибегают к пластифицированию поливинилхлорида, в результате чего получают поливинилхлоридный пластикат, имеющий важное значение в электроизоляционной технике, особенно для изоляции проводов и кабелей. [c.124]

    Как видно из приведенных формул, диоктилфталат имеет более длинные боковые цепи и более высокий молекулярный вес. Такое различие в химическом строении обусловливает существенное различие важных для пластификаторов физических свойств (табл. 6). [c.126]

    При рассмотрении свойств пластификаторов важно еще иметь в виду, что потеря пластификатора поливинилхлоридной пластмассой возможна не только за счет свободного испарения, а [c.131]

    Важная особенность формирования резиновых смесей — многокомпонентность системы, в связи с чем необходимо повышенное внимание к качеству смешиваемых ингредиентов (вулканизующих агентов, ускорителей, пластификаторов, пассиваторов, наполнителя и др.) и их дозирование. Наилучшие условия для смешения компонентов резиновой смеси достигаются при диспергировании наполнителей до коллоидального состояния на агрегатах для измельчения и введения ПАВ. Температура смешения зависит от свойств каучуков для основных видов натуральных и синтетических каучуков она составляет 90—100°С. Для каучуков, менее склонных к преждевременной вулканизации (например, бутилкаучуков), она может быть намного выше. [c.94]

    С помощью радиоизотопов исследовался ряд физических и механических свойств полимеров, определение которых является необходимым в технологии этих веществ. Так, именно этим методом были Получены важные в технологическом отношении данные о скорости диффузии пластификаторов. Применение тритиевой воды (ТНО) позволило получить точные данные о проникании воды в пластмассы. Таким образом с помощью тритиевой воды получены наиболее надежные данные об эффективности различных влагозащитных материалов. [c.220]


    Ацетат целлюлозы — наиболее важный из всех сложных эфиров органических кислот. По сравнению с нитратом целлюлозы он имеет меньшую воспламеняемость. Технические свойства ацетатов целлюлозы определяются степенью замещения, от которой зависят совместимость с пластификаторами и лаковыми смолами, а также растворимость в различных растворителях. Второй критерий — степень полимеризации, которая определяет вязкость, механические свойства продуктов и их перерабатываемость. Ацетаты целлюлозы с СЗ 0,6—0,9 растворимы в воде. Ацетаты с СЗ 1,2—1,8, растворимые в метилцеллозольве (2-метоксиэтаноле), используют для пластиков и лаков ацетаты с СЗ 2,2—2,7, растворимые в аце- [c.388]

    Физические свойства важнейших пластификаторов для сопо-лиамидов представлены в табл. 112 [38]. [c.609]

    Смола — важнейшая составная часть пластмассы, обусловливающая ее основные свойства. Наполнители (древесная мука, бумага, ткань, асбест и др.) придают пластмассам требуемые механические, физические и некоторые специальные свойства. Благодаря пластификаторам материал приобретает большую пластичность (становится менее хрупким и легче поддается обработке). Смазочные масла (олеиновая кислота, стеараг кальция и др.) устраняют прилипание материала к внутреннеГ поверхности формы при изготовлении изделий. Красител и [c.261]

    Смола — важнейшая составная часть пластмассы и обусловливает ее основные свойства. Наполнители (древесная мука, бумага, ткань, асбест и др.) придгют пластмассам требуемые механи-ческ)1е, физические и некоторые специальные свойства. Благодаря пластификаторам материал приобретает большую пластичность (становится менее хрупким и легче поддается обработке). Смазочные масла (олеиновая кислота, стеарат кальция и др.) устраняют прилипание материала к внутренней поверхности формы при изготовлении изделий. Красители придают массе нужную окраску. Примерами пластмасс сложного состава являются фенол-формальдегидная смола, аминопласты. [c.294]

    В справочнике изложены основные сведения о пластических массах, выпускаемых промышленностью Советского Союза (по состоянию на первую половину 1969 г,). Приведены поклзатели химических и физико-мехаиических свойств важнейших полимеров, технические требования к вырабатызаемы.ч на их основе пласгмассам, рассмотрены области их применения и способы переработки в изделия описаны наиболее распространенные пластификаторы, стабилизаторы и клен для полимеров. [c.2]

    Пластификатор должен быть способен быстро растворять ПВХ, особенно при сравнительно невысоких температурах (40—60° С). От него требуется хорошая длительная совместимость с полимером и компонентами рецептуры, практическая нелетучесть, низкая эк-страгируемость растворителями, водостойкость, относительно высокая химическая стойкость, отсутствие цвета и запаха, нетоксич-ность, а во многих случаях и хорошие диэлектрические свойства. Важно, чтобы эффективность пластификатора мало зависела от температуры. Свойства пластификатора определяются его химическим строением (табл. 50) . [c.361]

    Опыты со смесями пластификаторов (например, фталатов с фосфатами) такя е подтвердили основной вывод о том, что важно общее число молей введенных пластификаторов. Таким образом, в отношении изменения механических свойств различные пластификаторы в пределах изученной группы являются взаимозаменяемыми в эквимолярных соотношениях. [c.70]

    При получении диалкилфталатных пластификаторов из фта- левого ангидрида и спиртов С4—Са важную роль играет природа катализатора. Применение кислот делает необходимой нейтрализацию и промывку продукта, ведет к потемнению продукта, что ухудшает его потребительские свойства. Это привело к замене /(нслот на Т10г и Т1(0Р)4. [c.216]

    Важным потребителем толуола стало производство синтетических крезолов [19, с. 63—78]. Потребность в крезол ах определяется производством ядохимикатов из о-крезола для сельского хозяйства (отличающихся высокой селективностью по сравнению с ядохимикатами на основе фенола) и лаковых фенольных смол (отличающихся высокой эластичностью) л1-крезол является сырьем для ряда ядохимикатов, нетоксичных для человека и тепло- кровных животных л-крезол служит основным сырьем для массового производства нетоксичных и неокрашивающих антиоксидантов (ионола и антиоксиданта 2,2,4,6) наконец, смесь л -кре-зола (50—60%) и -крезола — так называемая дикрезольная фракция — служит сырьем для крезолоальдегидных смол и три-арилфосфатов. Крезолоальдегидные отличаются от фенолоальдегидных смол большей термо- и водостойкостью, лучшими адгезионными и клеющими свойствами, лучшими диэлектрическими показателями. Нетоксичные триарилфосфаты используют как пластификаторы и антипирены для изготовления ряда полимерных материалов и, в первую очередь, поливинилхлорида. [c.73]

    Взаимодействие полимеров с растворителем имеет большое значение при переработке полимеров, их применении, в биологических процессах и др. Например, белки п полисахариды в живых организмах и растениях находятся в набухшем состоянии. Многие синтетические волокна и пленки получают из растворов полимеров. Растворами полимеров являются лаки и клеи. Определение свойств макромолекул, в том числе молекулярных масс, проводят, как правило, в растворах. Пластификация полимеров, применяемая в производстве изделий, основана на набухании полимеров в растворителях (пластификаторах). Вместе с тем для практического применения полимеров важным их свойством является устойчивость в растворителях. Для решения вопросов о возможном набу-ханни, растворенпи полимера в данном растворителе или об его устойчивости по отношению к этим процессам необходимо знать закономерности взаимодействия полимеров с растворителями. [c.312]

    Наиболее важными производными этих нитроспиртов являются тринитрат триметилолнитрометана и динитрат 2-метил-2-нитро-1,3-пропандиола, имеющего строение Н02ССНз(СНа0Н)2, которые обладают взрывчатыми свойствами. Нитроспирты превращали также в эфиры фосфорной и органических кислот, с тем чтобы получать пластификаторы. [c.95]

    Реакция цианэтилирования представляет собой замещение атома водорода на р-цианэтильную группу действием акрилонитрила на вещества, обладающие подвижным атомом водорода — галоидоводо-роды, амины, спирты и др. При этом цианэтилирование спиртов имеет особое значение, поскольку образующиеся продукты — алкоксипро-пионитрилы—обладают многими практически важными свойствами, что позволяет использовать их в качестве эффективных пластификаторов, инсектицидов, полупродуктов для синтеза смачивателей и эмульгаторов. [c.75]

    Увеличение пластификаторов в поливинилхлоридной смеси с целью повышения гибкости и морозостойкости ограничено определенными пределами, так как оно, как уже было показано, отрицательно влияет на другие свойства пластиката. Поэтому весьма важно применить новые типы пластификаторов, обеспечивающих хороший пластифицирующий эффект при меньшем их содержании в поливинилхлоридной смеси. Из известных в настоящее время пластификаторов такими свойствами обладают эфиры себациновой кислоты (диоктилсебацинат или себаци-наты других высших спиртов). Они обеспечивают необходимую морозостойкость даже тогда, когда их содержание в пластикате снижено на 30—40% против требуемого количества аналогичных эфиров фталевой кислоты. Эфиры себациновой кислоты несколько более летучи, чем соответствующие фталаты. [c.129]

    Повышение пластичности полимерных пленок способствует сохранению защитных свойств покрытий в условиях знакопеременных и растягивающих нагрузок в коррозионно-активных средах, в том числе при наводороживании, при зтом важна способность покрытий сохранять свою эластичность в процессе длительной эксплуатации и при изменении температур. В качестве пластификаторов, обеспечивающих сохранение эластичности эпоксидных покрытий, применяют дибутилфталат, масло-эфир ЛЭ-5 (на базе синтетических кислот фракции С5 -С и диэтиленгликоля), П-3 - сложный эфир пентаэритрита и синтетических жирных фракций С5—С9 и др. Высокими пластифицирующими свойствами обладает маслоэфир ЛЭ-5, введение которого в эпоксидную композицию обеспечивает эластичность покрытия на длительное время, в том числе при низких температурах. Эпоксидные компаунды, пластифицированные маслоэфиром ЛЭ-5, применяют для защиты от коррозии внутренней поверхности насосно-компрессорных труб, которые эксплуатируют на сероводородсодержащих нефтяных месторождениях. [c.133]

    Другим аспектом структурообразования полимерного зерна, образующегося при высыхании капли латекса, является плотность упаковки Латексных глобул в агломератах, которая, так же как и объем пустот в зерне, определяет такое важное технологическое свойство полимерного порошка, как количество связанного пластификатора при последующей переработке через пластизоли. Чем больше суммарная пористость зерна, тем выше вязкость пластизоля при одинаковом массовом соотношении полимера и пластификатора. [c.125]

    Влияние полимеров на свойства пластмасс, в которые они входят, очень велико. Поэтому в названии пластмасс обычно содержится наименование того полимера, на основе которого приготовлена данная пластмасса, например поливинилхлоридная фенолоформальдегидная, поликарбонатная и т. д. Кроме полимера пластмассы содержат другие важные вещества, которые называют Ьспомогательными добавками — это пластификаторы, стабилиза-. торы, пигменты и красители, антистатики, наполнители и др. Таким образом, пластмассы представляют собой сложные композиции различных веществ, главнейшими из которых являются не-ламеры. [c.6]

    Остаточные мономеры и низкомолекулярные неполимеризующиеся примеси, попадающие в полимерные материалы из исходного сырья и употребляемых в их производстве растворителей, крайне неблагоприятно действуют на эксплуатационные качества самих полимеров. Источником примесей органических растворителей в полимерных пленках могут оказаться также лакокрасочные материалы, используемые для нанесения украшений и надписей. Иногда летучие примеси попадают в пластмассы вместе с добавляемыми к ним пластификаторами. Наконец, в некоторых медицинских полимерных упаковочных материалах и изделиях содержатся остаточные количества окиси этилена, применяемой для их стерилизации. Большинство содержащихся в полимерных материалах летучих примесей — вредные и ядовитые вещества, а винилхлорид является канцерогеном, вдыхание которого приводит к раку печени. Содержание этих компонентов подлежит строгому нормированию и контролю, причем особенно жесткие нормы устанавливаются на материалы, предназначаемые для упаковки и хранения пищевых продуктов. В этом случае даже сравнительно малотоксичные летучие примеси, попадая в пищу, могут существенно изменить ее запах и вкус, снизить качество и сделать непригодной к употреблению. Определение следов летучих примесей стало, таким образом, одним из важнейших направлений аналитической химии полимеров. Применение для этой цели парофазного анализа представляется особенно целесообразным прежде всего потому, что вводить в хроматограф полимеры нежелательно и не всегда возможно. Однако парофазный анализ полимеров требует учета специфических свойств анализируемых объектов, подавляющее большинство которых представляет собой твердые материалы, плохо растворимые в обычных растворителях и разлагающиеся при сравнительно низких температурах. Казалось бы, самым простым решением задачи мог быть анализ равновесной газовой фазы над полимером, но диффузия летучих компонентов из твердого полимера к его поверхности затруднена и равновс  [c.138]

    Шйрокий диапазон гибких, полугибких и жестких пластмасс, пригодных для получения (Пленок, листов, покрытий для проводов и ка(белей, экструдировайных профильных изделий, гарессоваиных изделий, деталей, изготовленных литьем и формованием, можно получить путем модификация жесткого ПВХ хлор/полиэтиленом. Добавка ХПЭ снижает стоимость композиции, улучшает ее физико-механические и электрические свойства, а также повышает огнестойкость., В настоящее время основная область применения ХПЭ — использование его как добати к ПВХ для улучшения различных свойств. Особенно важное значение имеет (использование ХПЭ в качестве высокомолекулярного пластификатора для повышения ударной прочности и эластичности ПВХ. [c.108]


Смотреть страницы где упоминается термин Свойства важнейших пластификаторов: [c.77]    [c.16]    [c.136]    [c.435]    [c.254]    [c.242]    [c.255]    [c.2]    [c.9]   
Смотреть главы в:

Справочник химика Т.6 Изд.2 -> Свойства важнейших пластификаторов

Справочник химика Том 6 Изд.2 -> Свойства важнейших пластификаторов




ПОИСК





Смотрите так же термины и статьи:

Пластификаторы



© 2025 chem21.info Реклама на сайте