Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Растворители гидрофильные

    Чтобы узнать, какая жидкость составляет дисперсную фазу, в эмульсию вводят некоторое количество красящих веществ, растворимых либо в воде (красители метиловый оранжевый, фуксин, метиленовый синий), либо в нефти (судан, сафранин). Для эмульсии типа вода в нефти растворимое в воде красящее вещество наблюдается в виде мельчайших точек. Этот метод применим для светлых эмульсий. Второй способ основан на электропроводимости эмульсий. Если дисперсионной средой является нефть, эмульсия тока не проводит (нефть — плохой проводник тока). Метод можно применять для темных эмульсий типа вода в нефти. Третий способ основан на разбавлении эмульсии водой или углеводородным растворителем. Гидрофильная эмульсия легко разрушается в воде, гидрофобная— в бензине или в бензоле. [c.178]


    Коэффициент распределения зависит от химического строения растворенного вещества и обоих растворителей (первоначального и вторичного) и является результатом действия тех же межмолекулярных сил, которые влияют на растворимость. Растворимость в одной жидкости и распределение растворенного вещества между двумя несмешивающимися жидкостями могут совершенно различаться по своему характеру. В системах вода—органическая жидкость— растворенное вещество замечено влияние разных групп, содержащихся в молекуле растворенного вещества, на коэффициент распределения (отношение концентрации в органической фазе к концентрации в воде). Эти группы по своему характеру могут быть гидрофильные, облегчающие растворимость в воде, и гидрофобные, способствующие растворимости в органической жидкости. К числу первых относятся группы ОН, 1 Нд, СООН, ко вторым—группы со связью С—Н, продолжающие углеродную цепь. Эти явления качественно [c.24]

    Поверхностно-активными веществами (ПАВ) называются вещества, концентрирующиеся на поверхности раздела фаз гетерогенной системы и снижающие поверхностное (межфазное) натяжение. Молекулы ПАВ содержат гидрофильные атомные группы, обеспечивающие растворимость ПАВ в воде, и гидрофобные, чаще всего углеводородные атомные группы, которые при достаточно большой молярной массе способствуют растворению ПАВ в неполярных растворителях. С помощью ПАВ можно влиять на энергетическое состояние и структуру межфазной поверхности системы и этим регулировать свойства гетерогенных и микрогетерогенных систем. [c.284]

    Поведение сополимеров, содержащих гидрофильные и гидрофобные группы, характеризуется хорошим набуханием, что увеличивает проницаемость, но набухание ограничено, что предотвращает полное растворение полимерной мембраны в растворителе. С этой точки зрения гидрофобные группы являются как бы сшивающими мостиками между соседними звеньями. Эти мостики могут иметь форму гидрофобных кристаллитов в аморфной массе гидрофильного вещества (как в случае сополимера полиэфиров окисей полиэтилена) или вызывать возникновение межмолекулярных сил типа диполь — диполь (как в случае диацетата целлюлозы). [c.69]

    Предложено разделять смесь дикарбоновых кислот адсорбцией из полярных растворителей гидрофильными адсорбентами [101]. Смесь кислот, полученная при жидкофазном окислении олеиновой кислоты, освобождается от минеральной, монокарбоновых и низших дикарбоновых кислот дистилляцией в вакууме. Остаток подвергается этерификации пропиловым, бутиловым или бензиловым спиртом и эфиры разделяются ректификацией [102]. [c.167]


    На процесс м1щеллообразования в водных растворах существенно влияет структура воды, которая способствует выталкиванию углеводородных радикалов из раствора одновременно частично разрущается структура воды. Благодаря дифильному строению молекул ПАВ углеводородные радикалы, взаимодействующие между собой в мицеллах, экранируются полярными гидрофильными группами. Поэтому происходит самопроизвольное мицеллообразование с минимальным поверхностным натяжением на границе раздела мицелла—вода, сопровождающееся умень-и]ением энергии Гиббса системы. Эффектом экранирования объясняется уменьщение энтальпии в процессе мицеллообразования. Взаимодействие отдельных частей молекулы ПАВ в молекулярном растворе с растворителем характеризуется различным изменением энтальпии лиофильная часть взаимодействует с выделением теплоты, лиофобная — с поглощением теплоты. Именно поэтому энтальпия растворения ПАВ имеет небольшие положительные илн отрицательные значения (чаще всего для водных растворов она положительна). В мицеллярном растворе экранирование лнофоб-ных групп приводит к уменьшению поглощения теплоты, т. е. н снижению энтальпии системы по отношению к энтальпии образования истинного раствора. Так как мицеллообразование является процессом возникновения новой фазы, то его можно сравнить с расслоением системы, т. е. с процессом ее упорядочения. Для таких процессов характерно уменьшение энтропии. Таким образом, самопроизвольное мицеллообразование по сравнению с образованием молекулярного раствора обусловлено уменьшением энтальпии [см. уравнение (УГ25)]. [c.297]

    Вследствие особой роли воды как растворителя и проникающего вещества много внимания было уделено изменению химической структуры полимерных мембран с точки зрения их гидрофильности. Обычно меняют долю гидрофильных групп в ответвлениях или в основной цепи полимера. Так, гидрофильность ацетата целлюлозы (что подтверждается и влажностью, и проницаемостью) прямо пропорциональна содержанию гидрофильных гидроксильных групп и обратно пропорциональна содержанию гидрофобных ацетильных групп. [c.68]

    В общем случае сорбенты для ГПХ можно классифицировать по степени жесткости матрицы (жесткие, иолу жесткие и мягкие), по материалу (органические и силикатные), по характеру гранул (сферические и дробленные), по смачиваемости растворителем (гидрофильные, гидрофобные и универсальные). [c.82]

    ПВП широко применяется в технике и медицине. Текстильная, бумажная, фармацевтическая и косметическая промышленность, производство фотоматериалов и клеев используют в основном водные растворы ПВП. Основными достоинствами этого полимера являются растворимость в воде и других растворителях, гидрофильность, способность к комплексообразованию. [c.93]

    Полярные группы, способные гидратироваться, растворяться и ориентироваться в полярных растворителях, называют гидрофильными они могут иметь кислый или основной характер  [c.333]

    Маршрут а Экстракция ОН в органическую фазу с последующим элиминированием требует молярного количества катализатора в паре с первоначальным противоионом, более гидрофильным, чем гидроксил. Эта реакция легко проходит при низких температурах. Не очень подходит для этой цели молярное количество тритона В, не полностью растворенного в толуоле или В аналогичном растворителе, поскольку образующийся га-логенид более растворим, чем гидроксид. [c.243]

    До некоторой степени были изучены параметры процесса. Так, при использовании V в качестве исходного продукта и Т БА как катализатора реакцию лучше вести при комнатной температуре, чем при 45°С применение концентрированного гидроксида калия дает лучщие результаты, чем использование разбавленных растворов бензол — лучший растворитель, чем гексан оптимальное время реакции составляет 10 ч [828]. В определенных условиях использование краун-эфиров обеспечивает такие же или гораздо большие выходы [829]. Однако было обнаружено [829], что выходы в реакциях, катализируемых 18-крауном-6, после достижения максимума при дальнейшем увеличении времени реакции снижаются более или менее резко. Этот эффект наиболее ярко выражен при температуре 45°С, когда через 2 ч наблюдается максимальный выход 85%, а через 10 ч —лишь 53%. Низкокипящие (например, бутадиен) или гидрофильные субстраты могут реагировать с системой твердый гидроксид калия/краун-эфир даже при таких низких температурах, как —78 °С [829]. [c.363]

    Причиной высокой гидрофобности сорбента является наличие на поверхности хлопкового волокна жироподобных веществ, препятствующих в природных условиях затоплению парашютирующих семян хлопчатника при попадании их на поверхность воды, как и у иных аналогично размножающихся растений. Обработка 1 кг сорбента в аппарате Сокслета хлороформом с последующим испарением растворителя позволила экстрагировать из сорбента около 20 г твердого воскообразного вещества коричневого цвета. Обработанный таким образом сорбент приобретал свойства гидрофильной гигроскопической ваты и при контакте с водой тонул в ней в течение нескольких секунд, тогда как исходный сорбент даже после десяти суток контакта с водой плавал по ее поверхности (табл. 2.12, рис. 2.9). [c.78]


    Для наиболее часто встречающегося случая распределения органического вещества между водой и органическим растворителем получены качественные характеристики влияния той или иной функциональной группы на величину коэффициента распределения [24]. Еслп определить коэффициент распределения как отношение равновесных концентраций в органической и. водной фазах, то очевидно, что введение в молекулу распределяемого вещества гидрофильных групп (—ОН, —СООН, —0—, =С=0, —NH2) снижает коэффициент распределения. Коэффициенты распределения альдегидов и кетонов примерно равны коэффициентам распределения спиртов. Атом галогена увеличивает коэффициент распределения. При этом эффект введения атома галогена увеличивается в ряду С1, Вг, I. [c.91]

    Процесс снятия гидрофобных растворителей со слоя активного угля ири десорбции водяным паром изучали на примере гексана [4]. Исследования показали, что, как и в случае гидрофильных растворителей [4], гексан десорбируется сразу со всего слоя адсорбента, причем десорбция сопровождается одновременной адсорбцией водяного пара. В начальной фазе процесса гексан вытесняется из лобовых слоев в замыкающие, активность их по гексану превосходит первоначальную примерно на 10%- Это свидетельствует о том, что десорбция гидрофильных и гидрофобных растворителей из углей протекает по одному и тому же механизму. Торможение процесса десорбции, вероятно, можно объяснить замедлением диффузии водяного пара внутрь пор адсорбента, заполненных растворителем. [c.92]

    В виде водорастворимых жидкостей обычно приготовляют пестициды, хорошо растворимые в воде. Это наиболее простой вид смеси. Преимущество водорастворимых жидкостей состоит в том, что разведенные до рабочей консистенции смеси обладают высокой устойчивостью. К этой группе относятся гидрофильные и ионные пестициды (например, органические и неорганические соли металлов). К сожалению, лишь небольшая часть всех пестицидов достаточно хорошо растворяется в воде. Эмульгируемую смесь приготовляют из пестицидов, растворимых в обычных органических растворителях (например, ксилол и керосин). Наличие в смеси эмульгаторов приводит к тому, что при разбавлении водой продукт образует эмульсию. [c.34]

    Но известны присадки иного типа — поверхностно-активные соединения, предотвращающие обледенение карбюраторов, которые образуют защитную оболочку на частицах льда, что препятствует их объединению друг с другом или оседанию на стенках карбюратора [8, 9]. Предполагают, что действие этих присадок основа[но на образовании мицелл, имеющих в наружной части углеводородные радикалы молекул, а во внутренней части — гидрофильные группы молекулы воды располагаются внутри мицеллы, что предотвращает их агрегацию при понижении температуры. Иными словами, присадки этого типа могут действовать как поверхностно-активные коллоидные растворители, обеспечивающие солюбилизацию воды в углеводородной среде [10]. [c.206]

    Семикарбазоны метилкетонов имеют наивысшую температуру плавления и труднее всех растворяются в органических растворителях. Семикарбазоны кетонов, у которых кетогруппы расположены ближе к середине цепи, растворяются гораздо легче. Поэтому семикарбазон метилкетО На, находяпгегося в смеси с другими изомерами, можно легко выделить в чистом виде кристаллизацией, все другие изомеры остаются в маточном растворе. Следовательно, селективность проявляется дважды первый раз при реакции с семикарбазидом и второй раз при перекристаллизации. Если проследить за выходами, сраэу будут заметны значительные потери. К тому же еще обнаружилось, что если заместитель находится в положении 2, растворимости натриевых солей алкилсульфатов и алкилсульфонатов в органических растворителях чрезвычайно малы, в то время как другие изомеры растворяются относительно легко. Так, из смеси различных изомерных алкилсульфатов или алкилсульфо-катов можно экстрагировать хлороформом, метилэтилкетоном или амиловым спиртом все изомеры, кроме 2-алкилсульфата или 2-алкилсуль-фоната, которые остаются нерастворимыми [84]. Алкилсульфонаты, у которых гидрофильная группа находится у второго атома углерода, негигроскопичны другие же изомеры сильно притягивают влагу и на воздухе расплываются. [c.567]

    При введении адсорбентов в водные растворы ПАВ молекулы ПАВ адсорбируются на границе вода — твердая поверхность. Согласно правилу Ребиндера при адсорбции ПАВ разность полярностей между адсорбентом и растворителем уменьшается. Все полярные гидрофильные поверхности адсорбируют ПАВ из неполярных и слабополярных жидкостей. Неполярные сорбенты, такие, как уголь или некоторые полимерные материалы, наоборот, хорошо адсорбируют ПАВ из полярных жидкостей. [c.41]

    В качестве таких полимеров, выпускаемых отечественной промышленностью, наиболее перспективными являются водные растворы полиакриламида аммиачного (АМФ) и известкового (ПАА) способа г роизводства. Предложенные гидрофильные высо-кополимеры растворимы в воде, наиболее доступном растворителе, не переходят в нефть и отделяются от нее при обычном отстое не ухудшают ка [ество пищевого парафина и специальных топлив. [c.162]

    Матрица ионита гидрофобна. Введение фиксированных ионов означает появление гидрофильных групп, вследствие чего матрица приобретает способность к набуханию, а смола превращается в полиэлектролит. По существу, зерно ионита является гигантской молекулой. Чтобы ее растворить, необходимо разорвать прочные связи С—С. Поэтому иониты нерастворимы в воде и во всех растворителях, не способных разрушить эти связи. Однако набухаемость синтетических ионитов ограничена благодаря наличию в полимерной молекуле поперечных связей, так называемых мостиков, или сшивки. [c.113]

    Методика распределительной хроматографии в колоночном варианте не отличается от рассмотренной в гл. II жидкостно-адсорбционной хроматографии. Здесь важен правильный выбор пары несмешивающихся фаз и твердого носителя неподвижной фазы. В их качестве могут применяться вещества различной молекулярной природы гидрофильные, удерживающие воду, и гидрофобные, удерживающие органические, несмешивающиеся с водой вещества. К носителям в колоночном варианте предъявляются следующие основные требования они должны прочно удерживать на своей поверхности неподвижную жидкую фазу, обладать достаточно развитой поверхностью, быть химически инертными, не адсорбировать анализируемые вещества и, наконец, не растворяться в применяющихся растворителях. [c.216]

    Для анализа водорастворимых веществ применяют гидрофильную бумагу, неподвижной фазой служит вода, а подвижной — органические водонерастворимые растворители, насыщенные водой. [c.222]

    Идеализированные структуры обычных и обратных мицелл приведены на рис. 5.14. В воде и в других полярных растворителях ПАВ ассоциируют с понижением свободной энергии раствора. Данный процесс включает в себя создание поверхности, разделяющей водную фазу с гидрофобной частью ПАВ. Эти гидрофобные части ассоциируют (объединяются) с образованием нанокапелек масла взаимопроникающих частей, которые отделены от воды или растворителя гидрофильной или сольвофильной [c.162]

    Среда оказывает существенное влияние на положение таутомерного равновесия (табл. 32). Так, полярные растворители (гидрофильные) смещают равновесие ацетоуксусного эфира в сторону кетонной формы и понижают содержание енола, а неполярные растворители (гидрофобные) увеличивают содержание енольной формы. [c.202]

    Совпадение уравнений (11.65) и (11.73), полученных с использованием различных исходных величин, вряд ли может рассматриваться как случайность. Из табл, 11.5 следует, что расхождение между расчетными и опытными значениями нулевых точек лежит в пределах ошибок экспериментального определения S и ы Независимость разностей нулег.ых точек от природы растворителя наблюдается для водных растворов и расплавов солей, в то же время этот вывод не находит полного подтверждения при сопротивлении ряда водных и неводных (органических сред). Точно так же некоторые металлы, папример галлий, резко выпадают из общей закономерности. Такой резул],тат представляется естественным, поскольку расчетные уравнения были выведены на основе упрощающих допущений и отвечают, в лучшем случае, лищь первому приближению теории нулевых точек, не учитывающему многие усложняющие факторы. Одним из наиболее важных факторов является различная адсорбируемость воды (или другого растворителя) на разных металлах, т. е. различная гидрофильность металлов. Это приводит к тому, что в нулевой точке на поверхности разных металлов образуются в неодинаковой степени ориентированные слои молекул воды, создающие добавочный скачок потенциала и смещающие положение нулевой точки. Помимо эффекта такой ориентированной адсорбции воды, подробно рассмотренного Фрумкиным и Дамаскииым, следует, по-вндимому, считаться и с более глу- [c.258]

    Величина стехиометрической константы экстракции зависит не только от органического растворителя, но и от размеров и структуры аниона и катиона. Эти факторы рассматриваются в следующих разделах. Нужно отметить, что экстракция возможна при очень большом разнообразии величин констант экстракции благодаря правильному выбору ионов даже наиболее гидрофильные анионы (например, ОН ) экстрагируются при использовании очень липофильных катионов, а наиболее гидрофильные катионы, такие, как Ме4Ы+, переносятся в [c.23]

    Значительная доля поверхностных гидрофильных атомных групп биополимеров представлена заряженными группами. Их взаимодействие с водой и ионными компонентами растворителя во многом определяет структуру и стабильность нуклеиновых кислот и белков и термодинамические свойства их растворов. Хорошими моделями заряженных атомных групп биополимеров являются одно-одно-валентные (1-1) электролиты и цвиттерио-ны аминокислот. [c.52]

    Возможность использования 2-3 %-х растворов ПАА в минимальном соотношении (1 2000) с обрабатываемой дисперсной системой нефти является их важным преимуществом по сравнению с дисолваном, проксамином, ОЖК и другими моющими ПАВ-де-эмульгаторами, требующими больших объемов дозировок в нефти в виде разбавленных водных растворов. Еще одним преимуществом использования полимеров типа ПАА является и то, что в отличие от ПАВ гидрофильные полимеры ПАА, АМФ и полиакриловая кислота практически необратимо адсорбируются на поверхностях различной гидрофильности из хороших (вода, диметил-формамид) и плохих (углеводороды, спирты) растворителей. Широко применяемые эмульгаторы — неионогенные ПАВ адсорбируются на твердых поверхностях обратимо, а их гидрофилизи-рующая способность значительно меньше таковой полимерных водных растворов [15]. [c.162]

    Хотя соотношение между гидрофильными и гидрофобными элементами и является ключевым фактором химической характеристики мембран, используемых для водных сред, последние не являются единственными в практике мембранного разделения. Разделение нефтяных фракций, например, может быть проведено с помощью полиэтиленовых мембран разной степени кристалличности. Такие мембраны уже были использованы для выделения испарением через мембрану л-ксилола из раствора, содержащего все три изомера. Аналогично в случае систем с полярностью, промежуточной между полярностью водных и углеводородных сред, разделение можно провести с помощью мембран, в которых установлено нужное соотношение между лиофобными и лиофиль-ными элементами по отношению именно к данному растворителю. Для такого в.одноподобного растворителя, как метанол, можно использовать мембраны те же или близкие к тем, которые используют для разделения водных растворов. Так и ацетатцеллюлозные, и мембраны из метилированного полиамида можно (с небольшими изменениями) использовать для разделения спиртовых растворов, в том числе и для низкомолекулярных спиртов. [c.70]

    Для очистки высокодисперсных эмульсий Н/В (например, конден-йатных) применяют всевозможные фильтры, заполненные смачиваемыми водой (гидрофильными) веществами, например карбонатом кальция. Вода проходит через гидрофильную массу фильтра, а нефть задерживается на ней. Существуют способы фильтрования эмульсии Н/В через активный уголь, на котором задерживается нефть, с последующей регенерацией фильтра легко испаряющимся растворителем. Примерно 1 кг активного угля задерживает из конденсатной эмульсии 150 г масла. Часто для удаления нефти или нефтепродуктов применяют метод флотации. К эмульсии Н/В добавляют реагенты, образующие студенистые хлопья, адсорбирующие на своей поверхности нефть. Капельки нефти заряжены отрицательно, поэтому добавка электролитов способствует их коалесценции. Для этого обычно применяют технический сульфат алюминия вместе с карбонатом натрия или каустической содой. [c.37]

    В работе [4] приведены результаты исследования динамики десорбции гидрофильных растворителей (этанол, пропанол, бута-Бол, ацетон, метилэтилкетон) из угля АР-3 водяным паром при температуре 102—110°С и скорости потока 0,1 м/с, причем растворители существенно различаются по сорбируемости. Установлено, что процесс десорбции растворителей сопровождается логлощением водяного пара, предельные величины адсорбции которого определяются изобарой (рис. 2.20,/). Одновременно была определена кинетика поглощения водяного пара активным углем (рис. 2.20,//). Можно видеть, что при t= 130 °С и выше равновесие устанавливается уже через 4—5 мин, и величиной адсорбции водяного пара (<0,02 г/г угля) можно пренебречь. В этом случае процесс десорбции водяным паром практически не отличается от десорбции несорбирующимися (малосорби-рующимися) газами (например, N2). [c.90]

    Характерным свойством понптов является набухаемость при контакте сухого ионита с раствором. Особенно сильно набухают синтетическпе ионообменные смолы. Основной причиной набухания ионитов в воде является наличие гидрофильных функциональных групп. Умеренное набухание ионитов является положительным фактором, способствующим функционированию ноногенных групп, находящихся внутри зерна ионита. Количественной характеристикой набухания является степень набухания ионитов. Степень набухания определяется отношением разности объемов набухшего и сухого ионита к массе сухого ионита. Набуханию препятствуют силы упругости трехмерной структурной сетки (матрицы), которые растут с увеличением степени сшивки полимера (т. е. с увеличением количества вводимого при синтезе мостикообразователя). Набуханию способствуют большая обменная емкость, гидратация противоионов и разбавление раствора (увеличение термодинамической активности растворителя). Неорганические иониты набухают очень слабо и удерживают растворитель в полостях кристаллической структуры. [c.169]

    Примером термодинамически устойчивых систем с адсорбцион-ио-сольватным фактором являются растворы неионогеиных ПАВ и ВМС. Ориентирование лиофильных частей молекул к растворителю обеспечивает резкое снижение поверхностного натяжения до значений, меньших критического значения (VI. 32). Полярные части молекул обращены в водную среду, а неполярные радикалы — в органическую. Из твердых веществ большой гидрофильностью обладают оксиды многих элементов, например, кремния, алюминия, железа. Поверхность частиц оксидов в воде обычно покрыта гидроксильными группами (гидроксилирована), которые сильно взаимодействуют с водой, образуя гидратные слои. Интересно, что для оксидов факторы устойчивости могут изменяться в зависимости от pH среды. Особенно это сильно выражено для диоксида кремния. Например, гидрозоль кремнезема в области pH 7,0—8,0 устойчив, главным образом, благодаря адсорбционно-сольватному фактору. Он не коагулирует при добавлении электролита даже в [c.338]

    Очистка от механических примесей и обезвоживание отработанных масел Отработанные нефтяные масла (ОМ) при 0.1-2 МПа и температуре 20-200°С смешиваются с. 5-50% раствором оксиэтилированнного алкилфенола (ОАФ) и 5-10% гидрофильно-линофильным балансом (ГЛБ), отстаиваются, причем количество использованного ОАФ составляет 0.01-3% в расчете на массу ОМ. Вязкость ОМ снижается путем разбавления углеводороднБ(м растворителем (тяжелым бензином). Возможно к ОМ добавление водного раствора, содержащего наряду с ОАФ гидроокиси щелочных или щелочно-земельных металлов и гидрофосфат алюминия в количестве 0.01-3% в расчете на ОМ. [c.170]

    Может возникнуть мысль, что насыщенный раствор одной какой-либо соли представляет собой малопригодную среду для растворения другого вида соли или сахара. Мы представляем себе насыщенный раствор соли, как раствор, в котором отсутствует свободная вода, так как все наличие воды идет на гидрацию ионов соли. Поэтому мы предполагаем, что в растворе нет воды, требуемой для растворения другой соли, или такого менее гидрофильного вещества, как сахар. Тем не менее фактически имеется возможность растворять в насыщенном растворе хлористого натрия как другой вид соли, так и сахар. Например, насыщенный водный раствор хлористого натрия (75%-ной относительной влажности) способен полностью удалить из искусственного щелка глюкозу, которой она была пропитана. Таким образом, мы принуждены заключить, что гидратизированные ионы соли обладают способностью сами действовать в качестве молекул растворителя. Раствор той же относительной влажности, состоящий из детергента и растворителя стоддард , в состоянии удалить при тех. же условиях лишь небольшую часть глюкозы (см. ссылку 156а). [c.188]

    Как ни соблазнительна описанная выше теория ионных трип летов , все же не следует делать из нее вывода о безусловной необходимости образования детергентами такого рода ионов в углеводородных растворителях. Прежде всего необходимо отметить, что, согласно данным Мэтьюса и Гиршгорна, для объяснения возрастания проводимости такая гипотеза отнюдь не требуется. Дан ные этих исследователей не являются непосредственно сравнимым] с результатами работы Крауса и Фуосса. Далее последние приме няли для своих опытов диоксан, т. е. гидрофильный растворитель. Следует предполагать, что поведение коллоида в додекане будет совершенно иным, чем в диоксане. Слишком уже очевидно нали- [c.204]

    В зависимости от уровня взаимодействия молекул растворяемого вещества и растворителя различают сольвофильную или сольвофобную сольватацию. Эти понятия введены для случаев неводных растворителей. По аналогии с гидрофильными и гидрофобными веществами для водных растворителей рассматривают сольвофильные и сольвофобные вещества, которые соответственно склонны к сольватированию данным неводным растворителем или практически с ним не взаимодействуют. [c.39]


Смотреть страницы где упоминается термин Растворители гидрофильные: [c.323]    [c.64]    [c.249]    [c.405]    [c.127]    [c.111]    [c.573]    [c.175]    [c.113]    [c.56]   
Курс теоретических основ органической химии (1975) -- [ c.20 ]




ПОИСК







© 2025 chem21.info Реклама на сайте