Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Спектры поглощения и возбуждения

    Рис 3.2. Изменение энергии сечению спектров поглощения возбужденного состояния в гт [c.124]

Рис. 25. Спектры поглощения, возбуждения и флуоресценции растворов морина и его комплекса с бериллием Рис. 25. <a href="/info/2753">Спектры поглощения</a>, возбуждения и <a href="/info/260244">флуоресценции растворов</a> морина и его комплекса с бериллием

    Спектр поглощения возбужденных кристаллов сульфида кадмия. [c.152]

    В. Л. Ермолаев. Как вы собираетесь изучать спектр поглощения возбужденных молекул очевидно, это невозможно  [c.306]

    При визуальном наблюдении свечение флуоресцирующих веществ может различаться по цвету и по яркости. Количественно флуоресценцию характеризуют спектрами поглощения, возбуждения и излучения и выходом флуоресценции. [c.36]

    УСТАНОВКИ ДЛЯ ИЗМЕРЕНИЯ СПЕКТРОВ ФЛУОРЕСЦЕНЦИИ Измерение спектров поглощения (возбуждения) [c.121]

    Для молекул с ионной связью частота, соответствующая месту схождения кантов в спектрах поглощения, непосредственно дает энергию диссоциации О ам.. Происходит это вследствие того, что возбуждение молекулы с ионной связью приводит к переходу электрона от аниона к катиону. Следовательно, распад возбужденной молекулы приводит к образованию нейтральных атомов. Этот вывод хорошо иллюстрируют потенциальные кривые нормального и возбужденного состояний молекулы с ионной связью (рис. П,3). [c.63]

    Так, перескакивая на все более глубокие уровни, электрон одного возбужденного атома водорода может последовательно испустить фотоны нескольких серий. Поэтому в спектре испускания раскаленного водорода присутствуют все серии линий. Однако при измерении спектра поглощения атомарного водорода при низких температурах следует учитывать, что практически все атомы водорода находятся в основном состоянии. Поэтому почти все поглощение связано с переходами с уровня и = 1 на более высокие уровни, и в результате в спектре поглощения наблюдаются только линии серии Лаймана. [c.349]

    В отдельных случаях, одпако, достаточно знания энергии диссоциации молекулы, чтобы решить вопрос о том, в каком энергетическом состоянии находятся продукты диссоциации. Так, например, если энергия активирующего света Е удовлетворяет условию В < Е + А, где А — наименьшая энергия возбуждения продуктов диссоциации, то можно утверждать, что при поглощении этого света молекула диссоциирует на невозбужденные атомы. Из положения границы между сплошной и дискретной частями спектра поглощения молекул Оз и Зз следует, что при поглощении света в области сплошного спектра эти молекулы диссоциируют на нормальный и возбужденный атомы. [c.159]

    Переход между двумя уровнями возможен только при изменении электрического дипольного момента системы или ее квадрупольного и т. п. момента, магнитного момента, поляризуемости, а также при возбуждении молекулы ударом электрона, атома, иона. Каждому из перечисленных процессов соответствует своя величина р. Наиболее часто в формуле (43.6) величина р — электрический дипольный момент системы. Тогда величина У " " называется дипольным моментом перехода. В дальнейшем, где специально не оговаривается, речь будет идти именно о спектрах, связанных с электрическим дп-польным моментом перехода (спектры поглощения и испускания). Если дипольный момент перехода равен нулю, электрическое дипольное излучение или поглощение невозможно, соответствующий переход запрещен. Из (43.6) следуют так называемые правила отбора, позволяющие предсказывать невозможность тех или иных переходов. [c.144]


    Светящиеся тела, содержащие возбужденные частицы, испускают излучение. Возбуждение происходит или путем поглощения квантов света, или при столкновениях, т. е. за счет теплоты. Спектры испускания известны для атомов и сравнительно небольшого числа молекул, в основном двухатомных (более сложные разлагаются при высокой температуре). Молекулярные спектры изучают главным образом как спектры поглощения, когда излучение источника сплошного спектра (например, лампы накаливания) проходит через кювету, наполненную молекулярным газом. [c.145]

    Электронные спектры — это спектры поглощения, испускания и флюоресценции. Спектр поглощения возникает при переходе обычно одного электрона с занятой МО на свободную вплоть до отрыва (спектр ионизации). Кванты, вызывающие электронный переход, велики, и частоты переходов в спектрах лежат в видимой и ультрафиолетовой областях. Для молекулы возможен ряд возбужденных состояний, каждое из которых описывается своей потенциальной кривой. Возбужденному состоянию отвечает обычно меньшая энергия диссоциации и большее межъядерное расстояние. При переходе в возбужденное отталкивательное состояние молекула диссоциирует. [c.166]

    Электронные переходы и спектры поглощения. Поглощение квантов электромагнитного излучения оптического диапазона молекулой или ионом обусловлено переходами электронов между электронными уровнями из основного в возбужденное состояние. Через 10 с частица, поглотившая квант, переходит обратно в основное состояние и вновь оказывается способной поглощать фотоны. Энергия, выделяющаяся при этом переходе, рассеивается в окружающей среде в виде тепла. Молекулы некоторых веществ могут терять энергию поглощенных квантов в виде фотонов, когда реализуется явление фотолюминесценции (см. разд. 1,2.5), [c.54]

    Каждому электронному состоянию соответствует набор колебательных подуровней, поэтому в спектре поглощения наблюдается система пОлос поглощения, соответствующих электронным переходам между подуровнями основного и возбужденного состояний. В фотометрическом анализе поглощающее вещество обычно находится в растворе, поэтому межмолекулярное взаимодействие поглощающего вещества и растворителя значительно увеличивает ширину полосы поглощения. Для каждого поглощающего вещества имеется определенное распределение интенсивности поглощения по длинам волн. При этом на кривой поглощения, называемой спектром, имеется один или несколько максимумов. [c.54]

    Поглощение в УФ-области является следствием возбуждения электронов в молекулах. Прочность этих связей, а следовательно, и характеристическая энергия перехода определяются природой ядер атомов, и, таким образом, длина волны, при которой происходит поглощение, является скорее свойством группы атомов, чем просто электронов. Можно ожидать, что структурные изменения в поглощающих группах будут сказываться и на характере поглощения в этом, собственно, и состоит сущность использования спектров поглощения для получения данных о структуре молекул вообще и в частности — о строении молекул асфальтенов. [c.211]

    Пусть состояние молекулы выражается точкой Ь в момент электронного перехода. Состояние возбужденной молекулы изобразится точкой 6, лежащей выше т. е. немедленно произойдет ее диссоциация. Все те молекулы, состояние которых выражается точками, лежащими левее прямой Ш, в результате электронного перескока будут диссоциировать в возбужденном состоянии если же состояние молекулы выражается точками справа от /г/г, например точкой с. то после перехода электрона молекула станет возбужденной, перейдя в состояние с без диссоциации. Таким образом, в молекулярных электронно-колебательно-вращательных спектрах возникают полосы и примыкающий к ним сплошной спектр поглощения. [c.73]

    При комнатной температуре поглощение происходит практически только с нулевого колебательного уровня основного состояния, а испускание — с нулевого колебательного уровня первого возбужденного состояния. Поэтому только один переход —так называемый 0—0-переход — имеет одну и ту же энергию и в поглощении, и в испускании остальные переходы отвечают большим и меньшим энергиям соответственно. Это означает, что спектр флуоресценции лежит с длинноволновой стороны первой полосы поглощения и перекрывается с ней при длине волны О—0-перехода. Форма полос поглощения и флуоресценции определяется распределением колебательных уровней состояний и 5о по энергиям. Это распределение часто одинаково для обоих состояний, и поэтому спектр испускания близок зеркальному отражению спектра поглощения (правило зеркальной симметрии). [c.53]

    Большую информацию можно получить из спектра возбуждения люминесценции. При измерении спектров люминесценции сканируется длина волны излучаемого света. При изучении спектров возбуждения, наоборот, монохроматор анализатора устанавливается на определенной длине волны (например, в максимуме спектра флуоресценции), а сканируется длина волны возбуждения. Щели монохроматора возбуждения должны быть достаточно малыми, чтобы получить хорошо разрешенный спектр. Получаемая при этом зависимость интенсивности флуоресценции от длины волны, прокалиброванная с учетом интенсивности возбуждающего света, и является спектром возбуждения данной люминесценции. После исправления полученного спектра с учетом спектрального распределения источника возбуждения он должен совпадать со спектром поглощения люминесцирующего вещества. [c.68]


    Непосредственная диссоциация связи О—Н путь (2)] идет с меньшим квантовым выходом, чем процесс фотоионизации анионов [путь (1)]. Образование возбужденных анионов фенолов в нейтральной среде связано с уменьшением рК в возбужденном состоянии. Максимумы и коэффициенты экстинкции спектров поглощения феноксильных радикалов приведены в табл. 17. [c.174]

    Величины уа и у., определяются по спектрам поглощения (возбуждение имнз льсным светом проводится в обоих случаях через один и тот же светофильтр). Определение е-г основывается на измерении Д/ т при 100%-ной конверсии молекул в триплетное состояние. [c.290]

    На рис. 25 изображены спектры поглощения, возбуждения и флуоресцентного излучения растворов морина и его комплекса с бериллием [558]. Максимум интенсивности флуоресценции при pH 11,5- -13,0 соответствует хбЗО ммк [321а, 558] (максимум поглощения щелочных растворов морина находится при 540 ммк) [321а] максимум поглощения и возбуждения комплекса — при 430—440 ммк [322, 558]. [c.119]

    Посторонние вещества (примеси) могут мешать определению либо вследствие того, что обладают собственной флуоресценцией, либо тем, что вызывают тушение флуоресценции. Если спектры поглощения (возбуждения) или флуоресценции определяемого вещества и примеси достаточно сильно различаются, то мешающее действие можно устранить надлежащим выбором длины волны первичного возбуждающего излучения, которое затем будет поглощаться только определяемым соединением, но не остальными прирутствующими компонентами если оказывается необходимым, [c.378]

    Чувствительность и воспроизводимость определения. Эти две важные характеристики зависят как от природы реагента, так и от условий проведения эксперимента, технических параметров ис-йользуемого флуориметра и т. д. В отличие от абсорбционной спектрофотометрии (где чувствительность пропорциональна максимальному значению е>,) чувствительность флуориметрического метода (в котором используется излучение, дающее более узкие полосы в спектре) пропорциональна суммарной энергии излучения, поглощенной данным веществом. Поэтому наиболее целесообразный прием достижения максимально возможной чувствительности должен опираться не на использование монохроматического излучения, а на применение возбуждающего света с более широкой полосой, отвечающей максимуму спектра поглощения (возбуждения) [204]. Однако такое повышение чувствительности обычно сопровождается снижением селективности определения. [c.379]

    В кристаллах КВг— Ni, выращенных из расплавов, в которые активатор добавлялся в виде окиси никеля, легко наблюдается также совершенно другой вид центров, для которых характерны неравномерное распределение, иной спектр поглощения (возбуждения) и очень яркое свечение, хотя они, по-видимому, составляют лишь малую долю введенной примеси. В указанных кристаллах, подвергнутых облучению рентгеновыми лучами, все перечисленные выше центры существуют одновременно, при этом места неоднородностей флуоресцируют зеленым, а прозрачные места кристалла оранжево-красным светом. [c.196]

    Для получения растворов, необходимых для снятия спектров поглощения, возбуждения и люминесценции, к раствору, содержащему Ъмкг 2п или 9 мкг С(1 (объемом 0,05 мл), добавляли 3,75 мл буферного раствора и 0,2 мл раствора реагента, т. е. общий объем раствора составил 4 мл, концентрация М= = 8-10- молей и К = 7-10 молей (М=2п, С(1 К — реагент). [c.36]

    Спектры поглощения (возбуждения) длительного и кратковременного свечения не совпадают ни по положению, ни по форме. Так, у ZnS Мп-фос-фора длительное свечение возникает главным образом при возбуждении в полосе поглощения основного вещества, при < 333 в меньшей степени—при возбуждении в длинноволновом конце этой полосы, связанном с присутствием активатора. При возбун дении лучами в сине-фиолетовой области спектра возникает только кратковременное свечение. [c.301]

    Другим доказательством существования реакций горячих радикалов, могут служить данные о фотолизе метилподида. Алкилиодиды имеют непрерывный спектр поглощения в области около 2500—2600 А с максимумом вблизи 2600 А. В этой области первичными процессами, сопровождающими поглощение света, являются процессы образования атомов иода и алкильного радикала. В случае метилиодида энергия связи С—I примерно равна 55 ккал. Если атом I находится в основном состоянии Рз/ , то избыток энергии ( 57 ккал) распределяется между I и СН3. Еслп атом I возбужден ( А/з), то избыток равен 35 ккал. Вследствие различия масс по крахгаей мере /в этого избытка энергии должно быть отдано радикалам СНд. Следовательно, если нет какой-нибудь быстрой реакции, включающей горячие метильные радикалы , то, по-видимому, они должны находиться в этой системе. [c.345]

    Как было предложено Гейдоном [481, а затем доказано Уолшем [491, свет излучает возбужденная молекула углерода СО. Уолш показал, что дискретное испускание в области от 3250 до 6250 А вызывается возбужденными молекулами СО2. В работах [49а 1 сообщалось, что прп взрыве обнаружены полосатые спектры поглощения,-которые были приписаны возбунаден-ной СО. [c.396]

    С точки зрения механизма фотохимической реакции существенное значение имеет вопрос о том, каков результат первичного воздействия света на молекулу поглощающего вещества. В зависимости от частоты света и структурных особенностей поглощающих свет молекул в резу.ггьтате фотохимической активации может произойти возбуждение, ионизация или диссоциация молекулы. Часто природа первичного фотохимического акта может быть установлена на основании данных о структуре спектра поглощения. [c.158]

    Сплошные спектры поглощения двухатомных молекул возникают в двух случаях когда верхнее (возбужденное) состояние молпиулы является полностью неустойчивым состоянием, характеризующимся потенциальной кривой отталкивания, либо когда в результате поглощепия света молекула оказывается на неустойчивом участке верхней кривой. [c.158]

    В зависи.мости от того какие лучи электромагнитного спектра пропускать через вещество, могут возбуждаться либо вращательные, либо колебательные движения, либо электронные переходы, либо все виды движений одновременно. Возбуждение того или иного движения в молекуле происходит тогда, когда его частота совладает с частотой электромагнитного колебания (резонанс). Наибольшей энергией обладают рентгеновские лучи (Я = 0,01 — 10А), еатем ультрафиолетовые лучи (10ч-4000.4), затем видимый свет (4000.А.8000А), затем инфракрасные лучи (0,8—300 р), затем микроволны 0,03—100 см и далее радиоволны. Энергия радиоволн слишком мала, чтобы возбуждать колебания молекул органических веществ. Микроволны и длинные инфракрасные волны могут возбуждать только вращательные движения в молекулах. Если частоты колебания этих волн совпадают с собственной частотой вращения отдельных частей молекулы, то происходит резонансное поглощение энергии инфракрасного облучения этой частоты, что отразится в спектре поглощения. Такого рода спектры применяются для тонкого структурного анализа органических веществ. Инфракрасные спектры органических соединений обычно изучают в пределах длтш волн 1 25 х, при этом линии поглощения Б спектре появляются за счет вращательного п колебательного движения в молекулах исследуемого вещества. Каждой функциональной группе и группе атомов в молекуле исследуемого соединения в спектре соответствует одна или несколько линий с опре-денной длиной волны. С помощью инфракрасных спектров можнс проводить идентификацию чистых углеводородов, анализировать качественно и количественно смеси нескольких компонентов вплотг-до обнаружения таких близких структур как цис- и транс-изомеры. На рис. 16 приведен г /с-спектр толуола. [c.32]

    Образование триплетных эксиплексов было обнаружено в полярном растворителе — ацетонитриле между радикалами акридина, азафенантреиа и катион-радикалами доноров электрона (дифенила, нафталина, нафтола). Такие эксиплексы образуются в результате реакции переноса электрона с донора на возбужденные катионы гетероароматических соединений. Спектры поглощения наблюдаемых триплетных эксиплексов являются суммой спектров свободных радикалов акцептора и катион-радикалов донора (рис. 65). Прочность данных триплетных эксиплексов в основном определяется не кулоновским, а обменным взаимодействием, поскольку они наблюдаются в полярной среде. [c.178]


Смотреть страницы где упоминается термин Спектры поглощения и возбуждения: [c.163]    [c.163]    [c.360]    [c.38]    [c.360]    [c.23]    [c.149]    [c.68]    [c.86]    [c.161]    [c.145]    [c.51]    [c.65]    [c.70]    [c.76]    [c.116]   
Смотреть главы в:

Неорганические люминофоры -> Спектры поглощения и возбуждения




ПОИСК





Смотрите так же термины и статьи:

Измерение спектров поглощения (возбуждения)



© 2024 chem21.info Реклама на сайте