Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

спектр потенциал ионизации

    В низкотемпературном пламени светильный газ — воздух атомные линии излучают щелочные металлы литий, натрий, калий, рубидий, цезий. Для определения калия используют излучение резонансного дублета 766,5 и 769,9 нм (4 51/2—4 Р°1/2.3/2), расположенного на границе видимой и инфракрасной частей спектра. Потенциал возбуждения этих спектральных линий ( в) — 1,62 эВ. Факторы специфичности интерференционных фильтров калия по отношению к излучающим в этих условиях элементам достаточно высоки и достигают нескольких тысяч. Влияние состава анализируемого раствора на интенсивность излучения калия в большой степени зависит от его концентрации и температуры пламени. В пламени светильный газ — воздух ионизация атомов калия незначительно проявляется лишь при его низких концентрациях в растворе порядка 1—2 мкг//мл. Присутствие [c.40]


    Процесс синтеза нефтеполимеров проводился в реакторе периодического действия при режимах температура 200-275 С продолжительность 6-8 час. Пробы отбирались с интервалом 1 час. Контролировались следующие параметры системы температура размягчения (Т ), среднечисловая молекулярная масса (ММ), коксуемость (К), относительная плотность (р). По электронным спектрам поглощения определялись эффективный потенциал ионизации (ПИ), эффективное сродство к электрону (СЭ), энергия активации вязкого течения (Е ), концентрация парамагнитных центров (С ) [3]. Свойства битум-стирольных композиций представлены в табл. 1. [c.110]

    В низкотемпературном пламени светильный газ — воздух атомные линии излучают щелочные металлы литий, натрий, калий, рубидий, цезий. Для определения калия используют излучение резонансного дублета 766,5 и 769,9 нм (4251/2—4 Р°1/2,3/2), расположенного на границе видимой и инфракрасной частей спектра. Потенциал возбуждения этих спектральных линий Ев) — 1,62 эВ. Факторы специфичности интерференционных фильтров калия по отношению к излучающим в этих условиях элементам достаточно высоки и достигают нескольких тысяч. Влияние состава анализируемого раствора на интенсивность излучения калия в большой степени зависит от его концентрации и температуры пламени. В пламени светильный газ — воздух ионизация атомов калия незначительно проявляется лишь при его низких концентрациях в растворе порядка 1-—2 мкг//мл. Присутствие 2—4 мкг/мл натрия в растворе, содержащем менее 2 мкг/мл калия, увеличивает интенсивность излучения калия. При более высоких концентрациях калия в растворе влиянием легко ионизующихся примесей можно пренебречь. Кислоты и анионы уменьшают интенсивность спектральных линий калия, причем наибольшее влияние оказывают фосфат-ионы. Предел обнаружения калия составляет 0,05 мкг/мл. [c.40]

    Одноэлектронные свойства зависят от состояния отдельного электрона в молекуле, как, например, потенциал ионизации молекулы или энергия возбуждения электрона. Именно измерение этих свойств различными методами, в первую очередь методом фотоэлектронной спектроскопии, доказывает справедливость представления о делокализованных молекулярных орбиталях. По тому строгое рассмотрение таких важных одноэлектронных свойств молекул, как их спектры и потенциалы ионизации, возможно только на основании представлений о делокализованных МО [к-18]. [c.200]


    Образовавшиеся ионы ускоряются при прохождении через отрицательно заряженные щелевые диафрагмы 6 по направлению к масс-анализатору. Неионизированные молекулы, как и незаряженные осколки, при помощи диффузионного насоса 8 выводятся из масс-спектрометра. Наряду с ионизацией электронным ударом иногда используют также другие методы получения ионов. При осуществлении фотоионизации необходимая энергия поставляется ультрафиолетовым излучением. Для этого требуется излучение с длиной волны 150—80 нм (вакуумная ультрафиолетовая область), соответствующее ионизационному потенциалу 8—15 эВ. При ионизации полем используют сильное электрическое поле, способное оторвать электроны от молекул вещества пробы. В обоих методах ионизации происходит мягкая ионизация, так как подводимая энергия лишь немного превышает потенциал ионизации и, таким образом, едва разрывает связи в молекулярном ионе . Поэтому спектры, получаемые при фотоионизации и ионизации по- [c.286]

    Например, если направить поток электронов, ускоренных электрическим полем при напряжении 4,9 в или несколько больше, на пары ртути, то при соударениях с электронами произойдет возбуждение атомов, которые имеют первый потенциал возбуждения 4,9 эв. Наиболее эффективно происходит возбуждение при энергии электронов, равной точно 4,9 эв. Пары ртути начнут излучать линию X = 2536,5 А- При увеличении напряжения, ускоряющего электроны, появляются линии с более высокими потенциалами возбуждения. При напряжении 10,4 в (потенциал ионизации ртути 10,4 эв) появляются все дуговые линии ртутного спектра, а также становится возможной ионизация атомов при соударениях с электронами. [c.49]

    Согласно большинству физических и химических методов, четыре связи в молекуле метана эквивалентны (например, ни ЯМР-, ни ИК-спектр метана не содержит пиков, которые можно было бы отнести к разного вида связям С—Н), однако имеется такой физический метод, который позволяет дифференцировать восемь валентных электронов в молекуле метана. Это метод фотоэлектронной спектроскопии [10]. Суть его состоит в том, что молекулу или свободный атом облучают в вакууме ультрафиолетовым светом, вызывая выброс электрона, энергию которого измеряют. Разность между этой энергией и энергией использованного излучения есть потенциал ионизации вырванного из молекулы электрона. Молекула, содержащая несколько электронов различной энергии, может терять любой электрон, энергия которого ниже, чем энергия использованного излучения (каждая молекула теряет только один электрон, потеря двух электронов одной молекулой практически никогда не имеет места). Фотоэлектронный спектр состоит из серий полос, каждая из которых соответствует орбитали определенной энергии. Таким образом, спектр дает прямую экспериментальную картину всех орбиталей в зависимости от их энергии, при условии что энергия используемого излучения достаточно высока [11]. Широкие полосы в спектре обычно соответствуют сильно связанным электронам, а узкие полосы — слабо связанным или несвязанным электронам. Типичным примером является спектр молекулярного азота, показанный на рис. 1.8 [12]. Электронная структура молекулы N2 показана на рис. 1.9. Две -орбитали атомов азота комбинируются, давая две орбитали — связываю- [c.24]

    Теплоты образования, потенциал ионизации, электронное сродство, спектр [c.237]

    Электростатические силы, возникающие между диполями, постоянными и индуцированными, характеризуются двумя основными параметрами — постоянным дипольным моментом ц и поляризуемостью а (способность электронных оболочек к деформации при воздействии электрического поля). Характерным параметром дисперсионных сил является основная (характеристическая) частота дисперсионного спектра колебаний атома vo. /ivo /, где h — постоянная Планка I — потенциал ионизации. [c.145]

    Пример. Значение длины волны, соответствующей началу континуума в спектре испускания натрия, равно 242 нм. Рассчитайте первый потенциал ионизации натрия. [c.41]

    Анализ колебательной и вращательной структуры наблюдаемой системы полос данного свободного радикала позволяет установить различные электронные состояния радикала. В случаях, когда в спектре обнаруживаются серии Ридберга, может быть определен потенциал ионизации. Это сделано, например, для радикала СН, для которого в табл. 2 приведены ридберговские состояния, предсказанные на основе теории молекулярных орбиталей. На диаграмме уровней энергии на рис. 50 изображены наблюдаемые электронные [c.81]

    Нами изучалась возможность определения азота по молекулярным полосам циана, образующегося в результате реакции азота и углерода при температуре дуги. Молекулярный спектр циана имеет достаточное число полос, низкий потенциал ионизации — 3,2 ЭВ в ультрафиолетовой и видимой области спектра, что позволяет получить высокую чувствительность, применять более распространенные типы фотопластинок и расширить диапазон определяемых концентраций, за счет использования различных циановых полос. Подобраны условия создания контролируемой атмосферы вокруг разряда, способы очистки графитовых электродов от азота, изучен характер выгорания азота из различных коксов. [c.134]


    В гл. 5 был описан метод фотоэлектронной спектроскопии. Согласно теореме Купманса, потенциал ионизации есть орбитальная энергия, взятая с обратным знаком. Таким образом, следует ожидать корреляции между пиками в фотоэлектронных спектрах ароматических молекул и энергиями хюккелевских орбиталей. Действительно, экспериментально найдена хорошая [c.203]

    У атома алюминия 46 электронных уровней ниже потенциала ионизации, соответствующие примерно 118 линиям в диапазоне 176-1000 нм. Для однозарядного иона А1 существует 226 уровней, они дают примерно 318 линий в диапазоне 160-1000 нм. Частицы А1 I и А1 II испускают относительно простые спектры, т. е. с ограниченным числом линий. В таком же диапазоне длин волн уран может испускать несколько десятков тысяч линий, что приводит, вероятно, к наиболее сложному из наблюдаемых спектров. Однако, если резонансные линии можно наблюдать в любом источнике излучения, то линии, возникающие из высоковозбужденных состояний, можно наблюдать только с [c.14]

    Кажущ ийся потенциал ионизации натрия в интервале температур 5000—7000 К больше на 0,3—0,4 эВ истинного потенциала ионизации [640]. Использование высокотемпературных источников нежелательно, поскольку ионные линии натрия находятся в далекой УФ-области спектра, для их регистрации необходима специальная аппаратура из-за поглощения света воздухом. Линии, соответствующие переходам с 5-уровней на / -уровень, расположены в ИК-обла-сти (1113,1—1140,4 нм), и их использование требует также специальной техники. [c.97]

    В рассмотренных структурах существенным моментом является взаимодействие ненасыщенных групп через пространство находящиеся между ними простые связи, вероятно, не принимают заметного участия во взаимодействии хромофоров. Следовательно, не должно удивлять, что наличие простых связей вовсе не обязательно и что взаимодействие можно наблюдать между ненасыщенными группами в различных молекулах. Эти межмолекулярные эффекты весьма примечательны тем, что они дают полосы, совершенно отсутствующие в спектрах отдельных молекул [24]. Такое поглощение отвечает переходу с переносом электрона, и поэтому существенным требованием перехода этого типа является низкий потенциал ионизации у одного из компонентов смеси и высокое сродство к электрону у другого. Если компоненты образуют в растворе рыхлый молекулярный комплекс, то это благоприятствует переходу тогда при поглощении кванта света перенос электрона будет происходить внутри самого комплекса предпочтительнее, чем между полностью разделенными молекулами. [c.220]

    Атом урана с его 92 электронами обладает очень богатым оптическим спектром, который состоит из многих тысяч переходов (спектральных линий), связывающих несколько сотен уровней. Потенциал ионизации атома урана равен 6,2 эВ. Во многих предложенных схемах должно быть использовано более двух длин волн, чтобы достигнуть энергии 6,2 эВ, необходимой для ионизации атомов урана. Общая селективность многоступенчатых процессов выше, чем двухступенчатого, поскольку она равна произведению селективностей, достигаемых на отдельных ступенях. [c.265]

    В то же время сейчас для сравнительно несложных карбенов, содержащих 5—6 тяжелых атомов, существуют высококачественные неэмпирические расчеты (НЭР), позволяющие адекватно и полностью описать всю молекулу в целом и, в частности, воспроизвести такие доступные эксперименту характеристики, как геометрическое строение, электронный спектр, потенциал ионизации, мультиплетность основного состояния и т. д. Это позволяет для труднодоступных экспериментально карбенов рассматривать расчетную информацию как заслуживающую высокой степени доверия. Разумеется, речь идет только о НЭР в достаточно полном базисе и (что особенно существенно для карбенов — молекул с открытой оболочкой) с учетом конфигурационного взаимодействия при этом дальнейшее расширение базиса не должно существенно менять рассчитываемые характеристики. Расчеты же в минимальном базисе ОСТ-ЗГФ не имеют преимуществ перед современными полуэмпирическими схемами типа МЧПДП/3 и МПДП. [c.18]

    Сераорганические соединения входят в состав большинства нефтей. По содержанию и составу сернистые соединения нефти сильно различаются. В нефтях, кроме элементной серы и сероводорода, присутствуют и органические соединения двухвалентной серы меркаптаны, сульфиды, тиофены, соединения типа бензо- и дибензотиофенов. Поэтому проблема технологии нефтехимической переработки серосодержащих нефтяных фракций требует разработки качественно новых экспрессных методов оценки физико-химических свойств фракций и входящих в них компонентов. В частности, таких важнейших характеристик реакционной способности, как потенциал ионизации (ПИ) и сродство к электрону (СЭ), которые определ пот специфику взаимодействия веществ с растворителями, термостойкость и другие свойства [1]. Чтобы перейти к изучению фракций серосодержащих нефтей целесообразно изучить зависимости изменений физико-химических свойств в гомологических рядах индивидуальных соединений, содержащих серу Определенные перспективы в этом направлении открывает электронная абсорбционная спектроскопия. Целью настоящей работы является установление существования подобных зависимостей между ПИ и СЭ в рядах органических соединений серы и логарифмической функцией интегральной силы осциллятора (ИСО). Основой данной работы явились закономерности [2-4], что ПИ и СЭ для я-электронных органических веществ определяются логарифмической функцией интегральной силы осциллятора по абсорбционным электронным спектрам растворов в видимой и УФ области. Аналогичные результаты получены для инертных газов. Обнаружена корреляция логарифмической функции ИСО в вакуумных ультрафиолетовых спектрах, ПИ и СЭ [3]. [c.124]

    Схема спектрографической установки показана на рис. 56, б. Регистрирующим прибором служит спектрограф J2, а в качестве спектроскопического источника света используется спектроскопическая импульсная лампа /, свет от которой, пройдя реакционный сосуд и спектрограф, попадает на фотопластинку 13. Спектроскопическая лампа зажигается через определенный промежуток времени после вспышки фотолитической лампы при помощи блока временной задержки 14. Таким образом по.лучается полный спектр поглощения фотолизуемого раствора. Меняя время задержки, можно получить набор спектров, изменяющихся во времени. В качестве импульсных фотолитических ламп обычно используются трубчатые импульсные ксеноновые лампы. Такие лампы имеют электрическую мощность до нескольких килоджоулей. Световая отдача таких ламп составляет 5- 20% от электрической мощности. Время вспышки ламп колеблется от 10 до 10 с (по уровню 1/е). Иногда для увеличения излучения в УФ-области к ксенону добавляют другие газы, например Нг, или ртуть. Используют им-пульсные лампы и с другим наполнением (Ог, N2, Аг). Ксенон обладает рядом преимуществ перед другими газами он имеет хорошие спектральные характеристики (сплошной спектр излучения), химическую инертность (нет взаимодействия с электродами), низкий потенциал ионизации. С увеличением энергии разряда максимум излучения смещается в ультрафиолетовую область. Разрешающее время импульсной установки определяется временем затухания светового импульса фотолитической вспышки. А время вспышки импульсной лампы в свою очередь зависит от нескольких факторов от типа лампы, электрической энергии и от емкости и индуктивности контура питания. Электрический контур составляют конденсатор, импульсная лампа и соединительные провода. Электрический разряд в контуре носит колебательный или затухающий характер в зависимости от соотнонюния между сопротивлением R, индуктивностью L и емкостью С элементов контура. Наиболее выгодным с точки зрения длительности импульса является соотпошепие Lj . Уменьшение времени затухания т достигается снижением индуктивности соединительных проводов, а также снижением емкости и индуктивности конденсатора (r yZ, ). При этом уменьшение энергии вспышки E = Wj2 компенсируется за счет увеличения напряжения на конденсаторе U. Увеличение [c.157]

    Изучение потенциалов ионизации сложных органических молекул и потенциалов появления осколочных ионов открыло широкие перспективы для аналитического применения низких ионизирующих напряжений. Масс-спектр, получаемый при ионизации многоатомных молекул электронами с энергией 50—70 эв, представляет собой совокупность молекулярных и осколочных ионов. Если ионизирующее напряжение больше потенциала ионизации, но меньше потенциала появления осколочных ионов, то масс-спектр анализируемого соединения будет содержать только один пик, отвечающий молекулярному иону. Такое упрощение масс-спектра обладает определенными преимуществами и может быть использовано для качестве1гного анализа смесей, а при наличии соответствующих калибровочных данных и для количественного определения концентрации компонентов в смеси. При этом исключаются сложные вычисления, неизбежные при расчетах обычных масс-спектров. [c.185]

    Для элементов, указанных в предыдущем упражнении, нарисуйте систему незаполненных термов и покажите, как происходит возбуждение атомов. Опишите химические свойства и спектральные характеристики. этих элементов потенциал возбуждения последних линий и область спектра, в которой они расположены, сложность спектра, потенциалы ионизации, валентность. [c.46]

    Основные экспериментальные методы определения потенциалов ионизации основаны на нахождении предела сходимости спектральных линий в атомных спектрах или применении метода фотоэлектронной спектроскопии. Для вычисления потенциала ионизации атома следует рассчитать его энергию до и после ионизации и взять их разность. Такая процедура получила сокращенное название АССП, если расчет проводится методом Хартри—Фока. Более простой путь расчета /х заключается в использовании теоремы Купманса. [c.73]

    Методы фотоэлектронной в рентгеноэлектронной спектроскопин основаны на измерении энергетического спектра электронов, выбитых из вещества при бомбардировке его потоком фотонов или заряженных частиц. Энергии выбитых электронов гин связаны с энергией соответствующих оболочек атомов или молекул в исследуемом веществе (без учета малых поправок на изменения колебательной и вращательной энергии при ионизации) соотношением Е =ку—1а, где км — эвергия бомбардирующих фотонов /д — адиабатический потенциал ионизации электрона в молекуле или атоме. Детектируя и зная энергию квантов Ау, определяют /д. [c.146]

    Анализ фотоэлектронного спектра молекулы воды полностью согласуется с такой электронной структурой. Первый потенциал ионизации (12,62 эВ) соответствует несвязывающей МО электронной пары кислорода 1Л,. Два следующих пика в фотоэлектронном спектре (/г = 13,8 эВ, Д = 17,2 эВ) обладают тонкой колебательной структурой, характерной для орбиталей, локализованных на связях. Они относятся к орбиталям 2а, и 1 2 соответственно. Наиболее низко расположенный уровень МО валентных электронов 1а, (/, = 32,6 эВ) содержит лишь небольшую примесь и-АО водородных атомов и фактически является второй неподеленной электронной парой, локализованной на 2 -АО кислородного атома. Рассмотренные отнесения иллюстрируются на рис. 10.3, на котором представлен фотоэлектронный спектр воды. [c.373]

    Анализ фотоэлектронного спектра молекулы воды полностью согласуется с такой электронной структурой. Первый потенциал ионизации (12,61 эВ) соответствует несвязывающей МО электронной пары кислорода Ьи Два следующих пика в фотоэлектронном спектре (/г=13,7 эВ, /з=17,2 эВ) обладают тонкой колебательной структурой, характерной для орбиталей, локализованных на связях. [c.161]

    ND0/2 Электронная плотность Дипольные моменты, длины связей, валентные углы, силовые константы, ЯМР корреляции Теплоты образования, потенциал ионизации, электронное сродство, спектр [c.358]

    Общая характеристика. Все атомы указанных элементов имеют по одному валентному электрону во внешнем уровне, а в предпоследнем уровне два электрона у лития п — 1)5 , у всех остальных по восемь электронов п — Первые элементы периодов — щелочные металлы — имеют наибольший атомный объем и наибольший радиус атома и наименьший потенциал ионизации по сравнению с остальными элементами соответствующего периода. Водород, будучи первым элементом первого периода, имеет кое-что общее со щелочными металлами. Это общее выражается в сходстве спектров, в равной валентности по кислороду (единице), в окислительном числе +1. Но ион Н не имеет аналогов, так как он очень мал по сравнению с катионами щелочных металлов и существует только в водных растворах в виде иона НдО . Потенциал ионизации атома Н значительно больше потенциалов ионизации щелочных металлов, а восстановительная способность водорода намного меньше. Водород имеет больше сходства с галогенами, являющимися так же, как и водород, предпбследнимн элементами периодов, и потому он будет рассмотрен вместе с галогенами в 7. [c.270]

    В качестве импульсных фотолитических ламп обычно используются трубчатые импульсные ксеноновые лампы. Такие лампы имеют электрическую мощность до нескольких килоджоулей. Световая отдача этих ламп составляет 5- 20% от электрической мощности. Время вспышки ламп колеблется от 10 до 10 с (по уровню 1/е). Иногда для увеличения излучения в ультрафиолетовой области к ксенону добавляют другие газы, например водород или пары ртути. Используют импульсные лампы и с другим наполнением кислородом, азотом, аргоном. Ксенон обладает рядом преимуществ перед другими газами он имеет хорошие спектральные характеристики (сплошной спектр излучения), химическую инертность (нет взаимодействия с электродами), низкий потенциал ионизации. С увеличением энергии разряда максимум излучения смещается в ультрафиолетовую область. Разрешающее время импульсной установки определяется временем затухания светового импульса фотолитической лампы. Время светового импульса фотолитической лампы в свою очередь зависит от нескольких факторов от типа лампы, электрической энергии, от емкости и индуктивности контура питания. Электрический контур составляют конденсатор, импульсная лампа и соединительные провода. Электрический разряд в контуре носит колебательный или затухающий характер в зависимости от соотношения сопротивления R, индуктивности L и емкости С элементов контура. Наиболее выгодным с точки зрения длительности импульса является соотношение i = 2 /"L/ . Уменьшение времени затухания х достигается снижением индуктивности соединительных проводов, а также сниже1 м емкости и индуктивности конденсатора (t ]/L ). При этом уменьшение [c.280]

    Конечно, существует много других ридберговских конфигураций, однако соответствующие состояния либо вообще не комбинируют с основным состоянием, либо комбинируют очень слабо, поэтому переходы не наблюдались. Предел ридберговских серий у СН2 соответствует энергии 10,396 эВ, что было бы потенциалом ионизации СН2, если бы в основном состоянии ион СН2 был линейным. Между тем изучение спектра ВН2, имеющего одинаковое число электронов с ионом СН2 , позволяет сделать вывод о нелинейности ВН2 в основном состоянии. Это наводит на мысль, что ион СН2 в основном состоянии также должен быть нелинейным. Поэтому приведенное выше значение энергии явяется только верхним пределом для потенциала ионизации СН2. [c.113]

    Спектры представлены в виде зависимостей чнсла отсчетов (каждому участку спектра соответствует свой масштаб) от потенциала ионизации. Участки спектра в области ниже 21 эВ были получены с использованием источника Hel [Pri e W. .], a в области выше 21 эВ—с испол зованием излучения /Со линии Mg [Siegbahn К,, and oworh rs]. [c.82]

    Существование двух и только двух различаюпщхся по энергии занятых уровней в молекуле метана, нижний из которых соответствует орбитали фь а второй, более высокий, - орбиталям щ, Ф з, Ф4, имеет четкое экспериментальное доказательство, состоящее в том, что у молекулы метана есть два потенциала ионизации. Потенциалы ионизации обьшно находят из фотоэлектронных спектров, представляющих собой орбитальный энергетический спектр данной молекулы. Фотоэлектронные спектры дают информацию о том, какая энергия необходима для удаления электрона с определенной орбитали. Наличие в фотоэлектронном спектре двух пиков, соответствующих потенциалам ионизации около 13 и 23 эВ, показывает, что картина, изображенная на рис. [c.44]

    Теоретич. анализ энергетич. состояний молекул проводят, как правило, с помощью упрощенных моделей, не учитывающих в полной мере всех взаимод. в системе ядер и электронов. При этом характерно появление В. э. у., к-рое, однако, снимается при переходе к моделям более высокого уровня. Так, при оценке первых потенциалов ионизации молекулы СН по методу молекулярных орбиталей получают 4-кратное вырождение основного электронного состояния иона СН4, к-рое отвечает удалению электрона с одной из четырех локализованных молекулярных орбиталей связи С—Н. Модели, более полно учитывающие электронную корреляцию (см. Конфигурационного взаимодействия метод), предсказывают снятие 4-кратного вырождения и появление 3-кратно вырожденного и одного невырожденного уровня (при сохранении эквивалентности всех четырех С—Н связей). Соответственно для молекулы СН должны наблюдаться хотя бы два различных, но близких по величине потенциала ионизации, что подтверждено экспериментально. Точно так же учет колебательно-вращат. взаимодействий снимает вырождение вращат. состояний молекул снятие случайного вырождения колебат. состояний связывают с учетом ангармоничности потенциальных пов-стей спин-орбитальное взаимод. частично снимает В.э.у. с различными значениями проекции спина на ось. Для квантовой химин очень важен эффект снятия вырождения электронных состояний молекулы при изменении ее ядерной конфигурации. Так, учет электронно-колебат. взаимодействия снимает упомянутое выше 3-кратное В. э. у. иона СН и объясняет колебат. структуру фотоэлектронных спектров СН,. [c.440]

    Нить характеризуется ее работой выхода, т. е. минимальным количеством энергии, необходимой для отрьша электрона от поверхности металла. В конфигурациях с одной нитью испарение и ионизация происходят с одной и той же поверхности. Используя две или три нити, можно разделить ступени испарения и ионизации, поскольку газообразная проба затем перемещается к другой нити и адсорбируется на ее поверхности. Это полезно для элементов, которые испаряются при низких температурах, но требуют высокой температуры для эффективной ионизации (например, Са). Нити изготавливают из тугоплавких элементов, таких, как Та, Ке или У, поскольку их температуры плавления равны 3000°, 3180° и 3400° С соответственно. Отметим, что их работа выхода составляет 4,30, 4,98 и 4,58 эВ соответственно. Работу выхода можно снизить добавлением, например, ТЬ к У. Работа выхода У с добавками ТЬ составляет уже 2,7 эВ. Элементы наносят обычно в ввде нитратов или хлоридов. Эффективность ионизации особенно высока для элементов, первый потенциал ионизации которых меньше 7эВ, таких, как щелочные элементы, щелочноземельные элементы, актинвды и лантаниды. Для элементов с потенциалом ионизации вьш1е 7эВ (например, Си, Рс1, 2п) может быть необходимо добавление реагентов, увеличивающих эффективность ионизации особенно распространен силикагель с добавками или без добавок. Преимуществом этого типа ионизации является то, что образуются только однозарядные ионы, приводящие в итоге к простому спектру. Следует заметить, что с помощью ТИМС наблюдаются не только положительно заряженные, но также и отрицательно заряженные ионы, особенно для неметаллов и при использовании нитей с низкой работой выхода. Примеры отрицательных ионов включают галогены, 8е,8 и Те. Теория положительной термической ионизации гласит, что отно- [c.133]


Смотреть страницы где упоминается термин спектр потенциал ионизации: [c.13]    [c.357]    [c.25]    [c.83]    [c.146]    [c.634]    [c.118]    [c.1582]    [c.573]    [c.298]   
Установление структуры органических соединений физическими и химическими методами том 1 (1967) -- [ c.310 ]

Установление структуры органических соединений физическими и химическими методами Книга1 (1967) -- [ c.310 ]

Химия бороводородов (1967) -- [ c.384 ]




ПОИСК





Смотрите так же термины и статьи:

Потенциал ионизации



© 2025 chem21.info Реклама на сайте