Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Исследование состава нефти и нефтепродуктов

    Сущность метода заключается в периодической ректификации нефти (нефтепродукта) при атмосферном давлении и под вакуумом. Метод позволяет определять фракционный состав нефти (нефтепродукта) по истинным температурам кипения (ИТК), устанавливать потенциальное содержание отдельных фракций и получать фракции нефти (нефтепродукта) для исследования их состава и свойств. [c.121]


    Детально эти методы описаны в соответствующих монографиях и учебниках . Применительно к исследованию нефти как сырья для производства товарных продуктов использование упомянутых методов представляет как научный, так и практический интерес. Но в технических нормах на товарные нефтепродукты не лимитирован ни углеводородный, ни групповой химический состав. Лишь в отдельных случаях, нанример для реактивных топлив, есть требование к содержанию ароматических углеводородов. Остальные показатели химического состава представлены в виде косвенных данных (йодное и кислотное число) исключением являются содержание серы (в топливах всех видов), ванадия (в газотурбинном топливе) и некоторые другие. Это положение не противоречит необходимости глубокого химического исследования фракций нефти. [c.75]

    На первоначальных этапах развития нефтяной промышленности, когда из нефти стали получать керосин и смазочные масла, возможности исследования и оценки их качества были весьма ограниченными. Состав нефти, керосина, масел и других нефтепродуктов был по существу еще неизвестен. Исследования элементарного состава нефти показали, что она состоит главным образом из углерода и водорода. Поэтому считалось, что нефть — это смесь углеводородов. [c.217]

    Физические п химические определения при исследовании нефтей и нефтепродуктов 233 Состав газов 236 Состав нефтей [c.377]

    II. Л у ч е п р е л о м л е н и е. Коэфициент лучепреломления широко используется для аналитических целей при исследовании нефтей. Из. различных классов углеводородов, входящих в состав нефтей и нефтепродуктов, наименьший коэфициент лучепреломления имеют углеводороды парафинового ряда. Большими значениями обладают нафтены и, наконец, самыми большими — ароматические углеводороды. [c.82]

    Изучалось испарение компонентов нелетучей матрицы в присутствии легкокипящих углеводородов. Учитывая сложный состав нефтей и нефтепродуктов, начальные исследования для удобства их интерпретации проводили на модельных смесях, составленных из легкой и тяжелой частей. В качестве легкой части применяли смесь индивидуальных углеводородов гептан-толуол (ГГ) в соотношении 1 1, а также бензиновые фракции с температурами выкипания 80- 120°С (Б1) и 120- 180 С (Б2), полученные при атмосферной перегонке смеси западно-сибирских нефтей. В качестве тяжелой части использовали гудрон — остаток вакуумной перегонки мазута западно-сибирских нефтей. [c.104]


    При незначительном содержании в нефти сера не оказывает заметного влияния на простейшие процессы переработки нефти и на качество получаемых из нее продуктов. При высоком содержании серы и усложнении схемы переработки нефти, включая процессы температурной деструкции и катализа, а также оснащении заводов высокопроизводительным оборудованием, влияние серы на переработку становится более ощутимым. Острее становятся вопросы охраны окружающей среды от загрязнения промышленными выбросами. Однако в наше время эту проблему нельзя рассматривать только с точки зрения осложнения производства нефтепродуктов из сернистых нефтей и ограничиться исследованием и разработкой методов удаления серы из нефти. Сера и органические соединения серы, входящие в состав нефти, являются весьма ценными продуктами, и их извлечение из нефти представляет самостоятельную задачу. [c.11]

    На идею парамагнетизма асфальтенов обратили внимание, стали использовать при исследованиях, хотя и не знали по началу каким образом исследовать это явление и как использовать эту информацию. Следует отметить, что парамагнетизму нефтей и нефтепродуктов было уделено повышенное внимание, потому как [97] одним из классов парамагнитных молекул являются свободные радикалы, которые в свою очередь [82] выполняют в нефтепродуктах ту же роль, что и ионы в водных растворах. Стабильные и нестабильные свободные радикалы являются органическими соединениями, входящими в состав нефти и нефтепродуктов, а также представляют из себя электрически нейтральные молекулы, обладающие неспаренным электроном в одной или нескольких молекулярных орбиталях (в том числе и триплетно-возбужденные молекулы - бирадикалы и, согласно [96] - синглетные бирадикалы). К свободным радикалам относятся также ион - радикалы, представляющие собой электрически заряженные молекулы с одним или несколькими электронами [97]. [c.73]

    Активационный анализ с применением заряженных частиц характеризуется тем, что для активации используются протоны которые вызывают реакции следующих типов (р, у), (р, п), р, 2п), (р, а), (р, й) и др. дейтроны, под действием которых возможны ядерные реакции ( , р), й, п), й, а), (й, 2 п), с1, t) и др. ядра трития ядра гелия-3 и а-частицы. Ограничением этих методов анализа нефтей, нефтепродуктов является необходимость эффективного теплоотвода от облучаемой пробы во время активации и то, что заряженные частицы не проникают глубоко в пробу. Анализ с активацией заряженными частицами позволяет получить низкий предел обнаружения для легких элементов. С наибольшей эффективностью этот метод можно использовать для исследования поверхностей и тонких слоев. Следует отметить также, что облучение заряженными частицами позволяет установить изотопный состав элемента в тонком слое или небольшом количестве вещества [302]. [c.85]

    Нефти и высококипяш ие нефтепродукты обладают замечательным свойством светиться под действием ультрафиолетовых лучей. На использовании этой особенности нефтей основаны методы люминесцентного анализа для познания химической природы сложных молекул, входяш их в состав нефтей и вызывающих люминесцентное свечение. Фотолюминесценция или излучение, возникающее лри возбуждении светом, как правило, наблюдается у молекул довольно сложного химического состава и строения. Существует, следовательно определенная связь между строением вещества и склонностью его к люминесценции. Поэтому исследование спектра люминесценции нефтепродуктов может дать весьма ценные сведения для суждения о строении ароматических структурных звеньев сложных молекул, входящих в состав высококипящих нефтяных фракций. [c.482]

    Рассмотрены свойства нефтей, нефтепродуктов и природных газов, методы их разделения и исследования, свойства и реакции основных классов соединений, входящих в состав нефти и газа, процессы переработки нефтяного сырья и углеводородных газов. Приведены данные о составе и эксплуатационных свойствах основных видов топлив и масел. [c.2]

    Существующие лабораторные методы исследования нефтяных остатков позволяют определять групповой химический состав нефтепродукта. Идентифицировать же индивидуальные углеводороды в нефтяных фракциях очень сложно, а иногда невозможно ввиду их многообразия [2.1]. При разделении и исследовании наиболее тяжелой части нефти возрастает значение физических и физико-химических методов анализа, которые позволяют изучать ее природу и свойства, не вызывая существенных химических изменений в объектах исследования. [c.34]

    Материалы исследований в районе другого месторождения, где химические реагенты применялись в течение короткого периода времени (около четырех лет), показали более низкое содержание ПАВ как в воде поверхностных водоемов, так и в подземных водах. Содержание анионоактивных ПАВ определялись от 0,5 до 2,1 мг/л, неионогенных от 0,3 до 1,5 мг/л (табл. 7). Следует отметить, что наши исследования проводились на этом месторождении после прекращения закачки ПАВ в нефтеносные горизонты для увеличения нефтеотдачи пластов. На этом основании можно предположить, что адсорбированные различными породами ПАВ во время закачки постепенно десорбируются добываемой нефтью при дальнейшей эксплуатации месторождения уже без применения химических реагентов. В анализируемых пробах отмечались изменения и общесанитарных показателей. Так, в пробах из поверхностных водоемов и подземных вод отмечалось появление нефтяного запаха, увеличение цветности, биохимического потребления кислорода (БПК) и химического потребления кислорода (ХПК), содержание нефтепродуктов. Приведенные данные свидетельствуют о том, что объекты нефтегазодобычи оказывают заметное влияние на состав и свойства воды водных объектов. Оно выражается в изменении органолептических свойств воды, ухудшении общего санитарного режима водоема и в появлении ряда химических соединений, способных привести к ограничению водопользования населения. [c.39]


    Ранее указывалось, что химический состав и вязкость дисперсионной среды существенно влияют на свойства обратных эмульсий. Поэтому разработка их составов с использованием различных нефтепродуктов или природных нефтей, имеющих сложный компонентный состав и широкий спектр вязкости, требует специальных исследований. [c.84]

    Наиболее доступные промысловые данные по свойствам и составам нефтей месторождений России приводятся в справочной литературе, например, [14, 16 и др.]. К сожалению, нефтепромысловая информация характеризует компонентный состав в основном растворенных в пластовой нефти газов и небольшую часть наиболее летучей головной части дегазированной нефти. Поэтому для получения более полной информации о фракционном составе нефти необходимо использовать экспериментальные данные, которые получают специалисты по переработке нефтей в процессе исследования промысловых проб нефтей для составления информационного банка данных по качеству нефтей и нефтепродуктов [30, 31, 32 и др.]. [c.44]

    Чередниченко В. П., Фадеев В. С., Осипов А. Н. Методы исследования группового и индивидуального состава ароматических углеводородов в нефтепродуктах, кипящих выше 200° С. — В сб. Состав, переработка и транспортировка нефтей Казахстана. Гурьев, изд-во Наука Казахской ССР, 1977, с. 26. [c.170]

    Поскольку нефть и нефтепродукты представляют собой многокомпонентную непрерывную смесь углеводородов и гетероатомных соединений, то обычными методами перегонки не удается разделить их на индивидуальные соединения со строго определенными физическими константами, в частности, температурой кипения при данном давлении. Принято разделять нефти и нефтепродукты путем перегонки на отдельные компоненты, каждый из которых является менее сложной смесью. Такие компоненты принято называть фракциями или дистиллятами. В условиях лабораторной или промышленной перегонки отдельные нефтяные фракции отгоняются при постепенно повышающейся температуре кипения. Следовательно, нефть и ее фракции характеризуются не температурой кипения, а температурными пределами начала кипения (н.к.) и конца кипения (к.к.). При исследовании качества новых нефтей (т.е. составлении технического паспорта нефти) фракционный состав их определяют на стандартных перегонных аппаратах, снабженных ректификационными колонками (например, на АРН-2 по ГОСТ 11011-85). Это позволяет значительно улучшить четкость погоноразделения и построить по результатам фракционирования так называемую кривую истинных температур кипения (ИТК) в координатах температура -выход фракций в % масс, (или % об.). Отбор фракций до 200°С прово- [c.70]

    Природа ингибиторов в нефтях окончательно не выяснена. Наличие в них фенолов в определенной степени объясняет природу ингибирующих центров в нефтях и нефтепродуктах. Исследования стабильности моторных топлив и масел [2, 3] показали, что кроме фенолов ингибирующей способностью обладают смолистые компоненты нефтей и многие остаточные продукты нефтепереработки. Однако систематических исследований в этой области не было. Состав и структуру, механизм ингибирующего действия детально не исследовали и строгий количественный анализ эффективности природных нефтяных ингибиторов до середины 70-х гг. не проводили. По-видимому, основной причиной этого было отсутствие информативных, высокочувствительных, удобных и надежных количественных методов анализа ингибиторов, не требующих специального их выделения из сложных многокомпонентных систем. [c.122]

    Велика роль в изучении химии углеводородного сырья и [ азработке методов его переработки отечественной науки. Традиционно высокий уровень научных исследований русских ученых в области химии нефти позволил создать теоретические основы и разработать эффективные технологические процессы переработки нефти. Классикой стали такие научные труды наших ученых, как "Научные основы переработки нефти" Л.Г. Гуревича, "Крекинг в жидкой фазе" А.Н. Саханова и М.Д. Тиличеева, "Избирательные растворители в переработке нефти" В.Л. Гурвича и Н.П. Сосновско — го, "Химический состав нефтей и нефтепродуктов" (коллектива работников ГрозНИИ), "Производство крекинг — бензинов" К.В. Кострина, "Химия нефти" С.С. Наметкина, "Введение в технологию пиролиза" А.Н. Буткова, а также учебники по технологии переработки нефти, написанные А.Ф. Добрянским, С.Н. Обрядчиковым, [c.40]

    Нам все же кажется, что существует очень серьезная переоценка методов спектрографического анализа углеводородного состава нефтепродуктов. Еслп этими лютодалпг в какой-то степспи можно (со значительными погрешностями) определять углеводородный состав легких и угяшх фракции (с тремя и максимум с иятью компонентами в смеси), то нри переходе к высшим фракциям нефти надежность спектральных методов резко снижается из-за резкого усложнения углеводородного состава тяжелых фракций нефти. Спектральные методы ни в коем случае не должны служить тормозом для развития других методов исследования углеводородного состава нефтепродуктов. Их развитие должно быть связано с развитием других химических, физико-химических и физических методов исследования ухлеводородного состава нефтяных фракций. [c.556]

    Объектами исследования служили остаточные нефтепродукты, значительно отличающиеся друг от друга содержанием парамагнитной фазы смеси дистиллятного крекинг-остатка арланской нефти (ДКО) с гудроном котуртепинской нефти (ГКН) и смеси асфальта пропановой деасфальтизации гудрона западно-сибирской нефти пропаном (АД) с экстрактом процесса селективной очистки масел арланской нефти (ЭСО) (фупповой и элементный состав представлен в табл. 1). Взятые в различных соотношениях, образцы позволяют получить смеси, которые отличаются соотношением диамагнитной и парамагнит-ной фаз. [c.128]

    Второй этап в истории исследования химического состава неф- тей и нефтяных продуктов был вызван интенсивным развитием нефтяной технологии в период 1910—1920 гг., связан с первой мировой войной, с расширением ассортимента нефтепродуктов, выпускаемых на рынок. Промышленность и потребители стали более требовательными к качеству продуктов, особенно нового вида нефтепродукта — бензина как моторного топлива. Перед химиками были цоставлены задачи изучения состава широких фракций нефти — товарных нефтелродуктов — для оценки их качеств. На втом этапе основной задачей сделалось не установление наличия в данной фракции того или иного углеводорода, а выяснение влияния того или иного класса углеводородов на товарные свойства данного нефтепродукта. Этот путь потребовал, прежде всего, огромной работы по созданию методик исследования. Наиболее ценными и содержательными, методически выдержанными и целеустремленными среди работ этого периода являются труды Грозненского научно-исследовательского института, вышедшие в свет в двух сборниках Итоги исследования грозненских нефтей и Химический состав нефтей и нефтяных продуктов . [c.169]

    В ходе многочисленных исследований было установлено, что каждому физико-химическому свойству соответствует несколько длин волн, на которых выполняются соотношения (4.2) - (4.4). Установлено, что каждому свойству соответствует длина волны, при котором эти соотношения выполняются с максимальной точностью. Такие длины волн называются аналитическими. В таблице 4.2 приведены аналитические длины волн для различных свойств и, соответствующие им, коэффициенты корреляции. Относительная ошибка определения свойств по уравнениям (4.4) - (4.5) не превышает 4%, а коэффициент корреляции - 0,85-0,99. Как видно из данных таблицы 4.2, принцип квазилинейной связи (ПКС) выполним даже в таких сложных веществах, как нефть, нефтепродукты, топлива, углеродистые вещества, полимерные смеси, асфаль-то-смолистые высокомолекулярные вещества и др. На основе ПКС предложены экспрессные методы, позволяющие определять по легкоопределяемой характеристике - коэффициенту поглощения, практически все трудноопредеяе-мые свойства молекулярных веществ и многокомпонентных смесей, например, молекулярную массу, вязкость, элементный состав, показатели термостойкости, температуру хрупкости, концентрацию парамагнитных центров, энергию активации вязкого течения, энергию когезии, температуру вспышки, вязкость, показатели реакционной способности и т.д. [14-30]. По сравнению с общепринятыми методами, время определения свойств сокращается от нескольких часов до 20-25 минут. Как свидетельствуют данные [14], для рассматриваемых свойств на аналитических длинах волн выполняется условие соответствия определения по общепринятым методам и расчетам по оптимальным параболическим и кубическим зависимостям. [c.90]

    О к и н ш е в и ч Н. А., Г о й с а Е, М. Методика определения группового химического состава современных авиабензинов. Сб. Исследование и применение нефтепродуктов , вып. II. Гостоптехиздат, 1950,стр. 176. Маслов П. С. и Ко поплин а В. И. О методах определения группового химического состава бензиновых и лигроино-керосиновых ефтяных фракций. Об, Состав и свойства нефтей и бензино-ке-1роси1новых фракций . Изд-во АН СССР, М., 1957, стр, 498, [c.33]

    За последние годы как у нас, так и за рубежом получили большое развитие работы по иссле дованию состава и свойств нефтей и нефтепродуктов. После обширных работ, опубликованных в настояш,ее время в печати, становится ясным, что уточнение природы углеводородов, входящих в состав нефтей, представляет несомненный научный и практический интерес. Расширение исследований в этом направлении обеспечит возможность разработки рациональной технологии и правильного выбора сырья для его химического использования. Дальнейшее накопление экспериментального материала позволит сделать правильные выводы о происхождении и миграции нефти. [c.236]

    В результате исследования было установлено, что доза извести не зависит от концентрации нефтепродуктов в сточной воде, но эффект очистки при большом количестве нефти снижается. Осадок a Oj оседает в течение 5 мин., однако значительное его уплотнение происходит через 2 часа. Содержание нефтепродуктов в сточной воде в количестве от 20 мг до нескольких сот в 1 л и состав нефти но оказывают влияния на конечный эффект очистки нефтесодержащих стоков известью. [c.134]

    Анализ сернистых соединений нефтяных дистиллятов сопряжен со значительными трудностями. Строение этих веществ сложнее строения углеводородов, в растворе которых они находятся, а содержание их в нефтепродуктах весьма мало (в среднедистиллятных фракциях высокосернистых нефтей не более 5—7 вес. %). Поэтому ни один из современных аналитических методов не позволяет с исчерпывающей полнотой определить состав нефтяных сернистых соединений. Лишь комбинируя методы определенным образом, удается решить эту задачу. Достоверность результатов во многом зависит от того, как подготовлено сырье для исследования. Насколько важна подготовка материала и насколько она может быть индивидуальна и неповторима для другого сырья, показывает следующий пример. Фракцию 111—150° С нефти месторождения Уассон (США) вначале в изотермических условиях разгоняли на узкие фракции. Из этих фракций специальными комбинированными методами были удалены меркаптаны (опи могли помешать определению соединений других классов). Однако даже такой подготовки оказалось недостаточно. Поэтому узкие фракхщ-подвергли гидрогеполизу. В результате сернистые соединения восстановились до соответствующих углеводородов, которые и были обнаружены методом газо-жидкост-ной хроматографии. Для проверки были проведены параллельные исследования методами ИК- и масс-спектрометрии, которые подтвердили правильность результата основного анализа. [c.75]

    Твердые парафины в нефтях находятся в растворенном или взвешенном кристаллическом состоянии. При перегонке мазута в масляные фракции попадают парафины, имеющие состав i8 —Сз5. В гудронах концентрируются более высокоплавкие углеводороды Сза — Сбз- Количество возможных изомеров для этих углеводородов огромно. Так, уже гексадекан имеет 10 359 изомеров, кипящих в пределах 266—288,5 °С. Но, как показали многочисленные исследования, около половины всех твердых парафинов нефти имеет нормальное строение, а остальные представлены мало-разветвленными структурами с небольшим числом боковых цепей (в основном, метильные и этильные группы). В ряде нефтей обнаружено наличие непрерывного ряда углеводородов, начиная от Сп- Например, в битковской нефти найдены все углеводороды нормального строения от С17 до С42. Вместе с тем сейчас уже не подлежит сомнению, что наряду с углеводородами СпНгп+2 в нефтях имеются твердые, способные к кристаллизации органические вещества с циклической структурой. Однако эти углеводороды главным образом входят в состав не парафинов, а церезинов — смесей более высокомолекулярных и высокоплавких углеводородов, которые выделяются либо из остаточных нефтепродуктов, либо из горючего минерала озокерита. [c.24]

    Изучен групповой состав ОСС нефтей основных месторождений Урало -Поволжья, Сибири, Севера и Средней Азии, позволивший впервые предложить классификацию сернистых и высокосернистых нефтей в зависимости от литологического состава нефтевмещающих пород, а также дать рекомендации о раздельной переработке нефтей с различным групповым составом сернистых соединений с целью улучшения. эксплуатациоп-HbDi свойств получаемых нефтепродуктов. Результаты исследования обобщены в монографии [1]. [c.195]

    Одной из основных задач, поставленных перед нефтеперерасЗаты-ваощей промышленностью решениями ХХУП съезда КПСС и "Основными направлениями экономического и социального развития СССР на 1986-1990ГГ. и на период до 2000 года",является значительное углубление переработки нефти. Для решения этой задачи необходимо вовлечение в переработку высококинящей остаточной части нефти, которая пока еще в значительной степени используется в качестве котельного топлива. Ввиду сложности проведения исследований этой наиболее высокомолекулярной части нефти в настоящее время еще мало изучены как химический состав нефтяных остатков, так и состав и свойства продуктов, получаемых в результате переработки остатков, и поведение остаточного нефтяного сырья в процессе его переработки. Нефтяные остатки содержат не только наиболее высокомолекулярные углеводороды различных классов, но и основную массу содержащихся в нефти неуглеводородных соединений, весьма разнообразных по своим химическим свойствам и структуре. Сложность состава высококипящих и остаточных нефтепродуктов в значительной мере определяет и их поведение в процессах переработки. [c.3]

    При проведении органолептических исследований необходимо учитывать ряд факторов, в частности температуру, состав воды, хлорирование и другие показатели, способные влиять на органолептические свойства воды. Концентрации большинства сильно пахнувших веществ, определяемых органолептически, находятся ниже границы, при которой эти вещества оказывают токсическое действие. Зто обстоятельство весьма важно для установления ПДК. Так, фенол и его производные улавливаются в концентрации 0,01—0,05 мг/л, нефть и нефтепродукты — определяются органолептически в концентрации 0,1 мг/л, что значительно ниже их токсической концентращии. [c.254]

    С учетом данных комплекса исследований по превращению тиоспиртов Сз—Сб и обессериванию нефтепродуктов в присутствии гумбрина при 250°С сделана попытка объяснения образования сероводорода в нефтях, нефтяных водах и газах. Результаты экспериментальных исследований находятся в полном соответствии с теоретическими воззрениями с метаморфизирующем влиянии пород на состав сернистых и высокосернистых нефтей. [c.149]


Смотреть страницы где упоминается термин Исследование состава нефти и нефтепродуктов: [c.11]    [c.96]    [c.6]    [c.200]    [c.20]    [c.6]    [c.6]    [c.11]    [c.92]    [c.9]    [c.3]    [c.18]    [c.18]    [c.98]   
Смотреть главы в:

Химия нефти и газа -> Исследование состава нефти и нефтепродуктов

Химия нефти и газа -> Исследование состава нефти и нефтепродуктов




ПОИСК





Смотрите так же термины и статьи:

Нефть и нефтепродукты



© 2024 chem21.info Реклама на сайте