Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Питтингообразование на нержавеющих сталях

    Питтинговая коррозия является одним из основных и наиболее опасных видов локального разрушения металлов и сплавов. Этому виду коррозии в водных растворах, содержащих активирующие анионы, подвергаются железо и его сплавы с хромом и никелем (нержавеющие стали), а также алюминий и его сплавы, никель, цирконий, кобальт, магний. Питтингообразование возникает, как правило, в пассивирующих растворах, в которых присутствуют окислитель и активатор. К активаторам относятся [c.46]


    Нержавеющие стали по своей стойкости к общей коррозии занимают одно из первых мест среди конструкционных материалов. Вместе с тем они склонны к различным видам местной коррозии, таким, как питтинговая, межкристаллитная, щелевая коррозия и коррозионное растрескивание. Химический состав стали оказывает существенное влияние на ее склонность к локальной коррозии. Молибден — элемент, наиболее эффективно понижающий склонность нержавеющих сталей к питтингообразованию и межкристаллитной коррозии. [c.32]

    Работа 54. Определение потенциала питтингообразования нержавеющей стали [c.257]

Рис. 5.8. Потенциостатические поляризационные кривые нержавеющей стали типа 18-8 в 0,1т Na l, показывающие повышение потенциала питтингообразования с увеличением добавок NajSOi при 25 G Рис. 5.8. <a href="/info/520474">Потенциостатические поляризационные кривые</a> <a href="/info/17132">нержавеющей стали</a> типа 18-8 в 0,1т Na l, показывающие повышение <a href="/info/333699">потенциала питтингообразования</a> с увеличением добавок NajSOi при 25 G
    Ввиду того, что пассивность. железа и нержавеющих сталей нарушается галогенид-ионами, невозможна анодная защита этих металлов в соляной кислоте и кислых растворах хлоридов, где плотность тока в пассивной области очень велика. Кроме того, если электролит загрязнен ионами С1", существует опасность образования питтингов даже при достаточно низкой плотности пассивного тока. В последнем случае, однако, достаточно поддерживать потенциал ниже критического потенциала питтингообразования для данного смешанного электролита . Титан, который имеет высокий положительный критический потенциал питтингообразования в широком интервале концентраций С1 -иона и температур, пассивен в присутствии С1 -ионов (низкая /пасс) и может быть анодно защищен даже в растворах соляной кислоты. [c.229]

    Катодная защита поляризацией до потенциала ниже критического потенциала питтингообразования. Для этого можно применять приложенный извне ток, а также в хорошо проводящих средах (например, морской воде) — защиту цинковыми, железными или алюминиевыми протекторами [44]. Аустенитные нержавеющие стали, применяемые для сварки малоуглеродистой листовой стали, а также гребные винты из стали 18-8, установленные на судах из черной стали, не подвергаются питтингу. [c.315]

Рис. X, 9. Зависимость потенциала питтингообразования нержавеющей стали в растворах хлорида натрия (/—4) и железа в растворе бромида калия (5) при 20° С от логарифма средней скорости смещения потенциала [174, 223] Рис. X, 9. <a href="/info/68508">Зависимость потенциала</a> питтингообразования нержавеющей стали в <a href="/info/348638">растворах хлорида натрия</a> (/—4) и железа в <a href="/info/368067">растворе бромида</a> калия (5) при 20° С от логарифма <a href="/info/6338">средней скорости</a> смещения потенциала [174, 223]

    Успехи, достигнутые в коррозионной науке и технике машиностроения с момента выхода первого издания, требуют обновления большинства глав настояш,ей книги. Детально рассмотрены введенное недавно понятие критического потенциала питтингообразования и его применение на практике. Соответствующее место отводится также критическому потенциалу коррозионного растрескивания под напряжением и более подробному обзору различных подходов к изучению механизма этого вида коррозии. Раздел по коррозионной усталости написан о учетом новых данных и их интерпретации. В главу по пассивности включены результаты новых интересных экспериментов, проведенных в ряде лабораторий. Освещение вопросов межкристаллитной коррозии несенсибилизированных нержавеющих сталей и сплавов представляет интерес для ядерной энергетики. Книга включает лишь краткое описание диаграмм Пурбе в связи с тем, что подробный атлас таких диаграмм был опубликован профессором Пурбе в 1966 г. [c.13]

    В хлоридных растворах, содержащих такие активные ионы-деполяризаторы как Ре +, Си +, Hg +, при комнатной температуре видимые питтинги на нержавеющих сталях появляются за несколько часов. В некоторых случаях такие растворы применяют при ускоренных испытаниях на склонность к питтингообразованию. [c.311]

    Алюминий склонен к образованию питтинга в водах, содержащих ионы С1 . Это особенно сильно проявляется в щелях или застойных зонах, где пассивность нарушается в результате образования элементов дифференциальной аэрации. Механизм питтингообразования аналогичен механизму для нержавеющих сталей, описанному в разд. 18.4.1 и в этом случае наблюдается критический потенциал, ниже которого питтинг не возникает [4, 5]. При наличии в воде следов ионов Си + (даже в количестве 0,1 мг/л) или Ре + они реагируют с алюминием, и на отдельных участках отлагаются металлическая медь или железо. Эти металлы выполняют роль катодов, сдвигая коррозионный потенциал в положительном направлении до значения критического потенциала питтингообразования. Таким образом, они стимулируют как возникновение питтинга, так и его рост под действием гальванических [c.342]

    В средах с высоким содержанием хлоридов отмечается протекание локальной коррозии большинства металлических материалов, в том числе нержавеющих сталей. Наиболее часто встречающейся формой локальной коррозии в морской воде является питтингообразование. Причиной появления питтингов, по-видимому, следует считать точечную перфорацию пассивной пленки на поверхности металла вследствие образования растворимых хлоридных комплексов. Внутри очагов коррозии отмечается локальное понижение pH, связанное с гидролизом продуктов коррозии. [c.14]

    Потенциал питтингообразования Епо является важной характеристикой коррозионной стойкости нержавеющих сталей. Чем выше потенциал питтингообразования, тем менее подвержена сталь этому типу коррозии. Потенциал питтингообразования принят за критерий для одной из классификаций нержавеющих сталей по их стойкости к морской коррозии. Для возможности сравнения коррозионной стойкости потенциалы сталей определяются в деаэрированной морской воде, не содержащей окислителей. [c.21]

    В табл. 1.3 представлены значения потенциала питтингообразования для некоторых нержавеющих сталей при температурах 30 и 80 °С. [c.21]

    Для коррозионного поведения нержавеющих сталей в морской воде характерна склонность к питтинговой коррозии, начало которой определяет значение потенциала питтингообразования. Потенциалы питтингообразования для различных нержавеющих сталей в растворе хлорида натрия приведены в табл. 2.3. [c.27]

    На склонность нержавеющих сталей к питтингообразованию большое влияние оказывает также состояние поверхности. Гладкая, механически полированная поверхность стального оборудования значительно меньше подвержена коррозионному разрушению. Однако для электролитически полированных изделий из нержавеющей стали вероятность питтингообразования повышается. [c.23]

    Коррозионная стойкость нержавеющей стали зависит также от вида холодной обработки вытяжки, растяжения, прокатки при степени деформации О—50%. Исследования микроструктуры с помощью рентгеноструктурного анализа и электронной спектроскопии показывают, что с увеличением степени деформации нержавеющих сталей, например сталей типов 304 и 316, особенно при низкой температуре обработки, возрастает содержание мартенситной фазы, одновременно увеличивается плотность дислокаций. Установлено, что с возрастанием степени деформации снижается потенциал питтингообразования, а также сужается область пассивного состояния. Как уже отмечалось выше, наблюдается также различие электрохимических характеристик поверхностей, по-разному ориентированных по отношению к направлению деформации, а также электрохимическая анизотропия изделий из сталей, не подвергнутых холодной деформации. Повышенная склонность к питтингообразованию у деформированного материала объясняется возможностью образования трещин в неметаллических включениях и на границах включение — матрица , за счет чего может увеличиться число активных центров питтингообразования. Электрохимическая анизотропия деформированного материала обусловлена большей локальной плотностью неметаллических включений в поперечном сечении стальных изделий [15]. [c.27]


    Коррозию внутренних поверхностей различных емкостей целесообразно предотвращать путем нанесения алюминиевого покрытия. В особо ответственных случаях, например для защиты от коррозии изготовленных из углеродистой стали циркуляционных трубопроводов и паропроводов установок с водяным охлаждением и аппаратов, работающих при высоких давлении и температуре, на углеродистую сталь наносится плакированием покрытие из нержавеющей стали. Это покрытие является весьма стойким во всех природных водах. Эффективно покрытие из аустенитных сталей. Однако при наличии интенсивных тепловых потоков возможна коррозия защищенных поверхностей. В жестких природных водах локальная коррозия может развиваться и при небольших тепловых потоках в результате концентрирования хлоридов под отложениями. Хлориды могут накапливаться в щелях и трещинах на теплопередающих поверхностях. При наличии хлоридов возможно питтингообразование, а при механических нагрузках может протекать процесс коррозионного растрескивания под напряжением. [c.99]

    Питтингообразование на нержавеющих сталях [c.47]

    Адсорбционная природа пассивирующего действия анионов доказывается также тем, что эффективность ингибиторов определяется значением потенциала (рис. 1,4). Ион МОз вытесняет С1 в широкой области потенциалов слабые осцилляции потенциала наблюдаются лишь вблизи потенциала питтингообразования. Ион СгОГ, наоборот, вытесняет С1 с поверхности металла и пассивирует сталь при малых положительных потенциалах. При более положительных значениях потенциала адсорбция С1 усиливается в большей степени, чем адсорбция СгО , и между ними начинается конкуренция электрод переходит в нестабильное состояние и начинается периодическая активация и пассивация его. Пассивирование ингибиторами нержавеющих сталей облегчается по мере увеличения концентрации хрома в сплавах, поскольку этот элемент легко пассивируется кислородом. [c.16]

    Важной характеристикой коррозионной стойкости низколегированных и нержавеющих сталей, алюминиевых, титановых и других сплавов является коэффициент питтингообразования. Он представляет собой отношение средней глубины всех питтингов к условной глубине, вычисленной по потере массы при допущении, что коррозия носит равномерный характер.  [c.19]

    Связь между минимальной активностью аниона, необходимой для ингибирования питтингообразования нержавеющей стали 18-8, алюминия и, возможно, многих других пассивных металлов в растворе с заданной активностью С1 имеет вид Ig a i- = k Ig + onst. [c.88]

    При эксплуатации в морской воде нержавеющие стали обычно имеют потенциал +200 мВ по НКЭ. При увеличении потенциала понижается критическая температура питтингообразования при определенной концентрации хлоридов и постоянном потенциале и, следовательно, повышается опасность питтинговой коррозии. [c.22]

    Метод измерения при ф = onst был применен для наглядной демонстрации обнаруженного эффекта сдвига в отрицательную сторону потенциала питтингообразования нержавеющей стали под действием ультрафиолетового освещения [174]. УФ- [c.170]

    Для пассивных металлов критерий защиты иной. Поскольку такие пассивные металлы, как алюминий или нержавеющая сталь, при низких скоростях коррозии растворяются равномерно, а при высоких — с образованием питтингов, их катодная защита обеспечивается уже при поляризации до значений более отрицательных, чем критический потенциал питтингообразования (см. разд. 5.5.2). Последний лежит в пассивной области, и его значение тем ниже, чем выше концентрация С1"-ионов в 3 % растворе Na l его значение для алюминия составляет —0,45 В. [c.227]

    Даже для высоколегированных нержавеющих сталей пассивное состояние в морской воде неустойчиво, и они склонны к питтингообразова-нию. Поэтому важная характеристика коррозионной стойкости металлов в морской воде — потенщ1ал питтингообразования. В морской воде смещение потенциала питтингообразования в отрицательную область происходит при увеличении концентрации ионов хлора, повышении температуры и pH. [c.14]

    В табл. 11 даны значения потенциалов активирования и минимальной плотности тока, необходимой для возникновения питтингов, которые определялись по кривым заряжения для различных нержавеющих сталей в децинормальном растворе КаС1. Для сравнения приводятся данные р потенциалах питтингообразования, полученные нами потенциостатическим методом. [c.189]

Таблица 2.3. Потенциалы питтингообразования пит нержавеющих сталей в растворе Na l концентрацией 0,5 моль/л [2] Таблица 2.3. Потенциалы питтингообразования пит <a href="/info/17132">нержавеющих сталей</a> в растворе Na l концентрацией 0,5 моль/л [2]
    По этому методу нержавеющая сталь поляризуется анодно от внешнего источника тока и измеряется ее потенциал. По мере увеличения приложенного извне напряжения потенциал нержавеющей стали все более и более облагораживается. При достижении некоторой величины наложенного потенциала электродный потенциал анодно поляризованной стали достигает максимального значения, после чего начинает падать (разблагораживается). Допускается, что в этот момент происходит разрушение защитной пленки в одной или нескольких точках поверхности и это вызывает падение потенциала стали. Максимальное значение электродного потенциала, с которого начинается падение потенциала (рис. 136), носит название потенциала пробоя и характеризует, по мнению многих авторов, устойчивость нержавеющих сталей по отношению к питтингу или склонность к питтингообразованию. [c.281]

    Для большего повышения коррозионной стойкости в состав хромоникелевых нержавеющих сталей вводят молибден. Молибден улучшает пассивируемость сталей в неоьсислительных средах, сужая область активного растворения, и способствует существенному снижению их склонности к питтинговой и щелевой коррозии за счет затруднения питтингообразования, облегчения репассивации, снижения скорости растворения металла в очагах локальной коррозии и увеличения индукционного периода. [c.188]

    В табл. 1.4 приведены потенциалы питтингообразования хромсодержащих нержавеющих сталей отечественных марок в 0,5 М растворе МаС1 при нормальных условиях. [c.22]

Таблица 1.4. Потенциалы питтингообразования Епо хромсодержащих нержавеющих сталей в 0,5 М растворе Na l Таблица 1.4. Потенциалы питтингообразования Епо хромсодержащих <a href="/info/17132">нержавеющих сталей</a> в 0,5 М растворе Na l
    Стойкость к питтингообразованию сплава Hastelloy С в морской воде значительно выше, чем у нержавеющих сталей типа AISI 316 (содержащей 18% Сг, 18% Ni и Мо). К тому же коррозионная стойкость сплава Hastelloy С мало зависит от колебаний температуры. [c.30]

    Железобактерии могут вызвать коррозионное разрушение нержавеющих сталей. На одном из химических заводов для хранения и перекачки азотистой, муравьиной и уксусной кислот были установлены баки и системы трубопроводов, изготовленные из нержавеющих аустенитных сталей 304L и 316L. Перед эксплуатацией баки и трубопроводы прошли гидравлические испытания, для которых использовали обычную водопроводную воду с концентрацией хлоридов 200 мг/л. После испытаний в результате неполного удаления воды в баках остался слой воды толщиной около 1 м. Через месяц были замечены сквозные разрушения стенок бака (толщиной 3 мм) и сплошные коррозионные разрушения труб. Химический и микробиологический анализы продуктов коррозии и вод позволили однозначно установить, что причиной разрушений были железобактерии и марганцевые бактерии (осаждающие нерастворимые соединения марганца). В результате жизнедеятельности этих микроорганизмов в слое у поверхности металла создавались очень высокие концентрации хлоридов железа и марганца, вызывающие интенсивное питтингообразование. [c.67]

    Автором с сотр. [60] исследована возможность применения анодной защиты нержавеющих сталей в многокомпонентном растворе, содержащем КС1 и HNO3, в интервале температур 40—70 °С при pH 2,2—4,5. Установлено, что анодная защита предотвращает питтингообразование на стали 12X18H10T в разбавленной азотной кислоте, содержащей хлориды, и снижает скорость коррозии более, чем в 2000 раз [61]. О совместном влиянии ионов NO3 и анодной поляризации нержавеющих сталей подробно говорится в главе 3. [c.21]

    Наиболее эффективно действующим ингибитором питтинговой коррозии нержавеющих сталей является анион NO3. Эффект подавления питтингообразования на стали I8 r8Ni описан Улигом [30]. Он определил, что ионы NOii в достаточной концентрации полностью ингибируют питтинговую коррозию стали [c.47]

    Подавление питтингообразования в хлорид-нитратных растворах при потенциалах, превышающих верхний потенциал питтингообразования, названный Феттером [29] потенциалом ингибирования питтинговой коррозии фин, наблюдалось Браунсом и Швенком [33] на нержавеющих сталях. [c.48]

    Х17Н14М2 имеет практически одинаковое значенне, а наиболее отрицательное значение у стали 06ХН28МДТ. Наличие пассивной области после области питтингообразования делает возможным применение анодной защиты нержавеющих сталей в пульпе сложных удобрений [41—44], [c.54]

    Штрейхер [15] несколько видоизменил метод оценки склонности нержавеющих сталей к питтингообразованию. Если в методе Бреннерта испытания заканчивались после образования первого питтинга и о склонности к питтингообразованию судили по величине потенциала электрода, то в работе Штрейхера стандартный метод испытания заключался в увеличении тока от О до 3 ма1см и поддержании максимальной плотности тока в течение 5 мин. В качестве критерия сопротивляемости стали к зарождению питтинга служило число питтингов, возникающих на единице поверхности. [c.282]

    Метод Бреннерта в различных его модификациях, несомненно, поз-воля.ет быстро получать результаты по влиянию химического состава стали, термической обработки и состояния поверхности на склонность нержавеющих сталей к питтинговой коррозии. Не ясным лишь остается вопрос, насколько потенциал пробоя может характеризовать поведение стали в реальных условиях эксплуатации и что кроется под понятием потенциал пробоя . Можно ли эту характеристику отождествлять с потенциалом активирования или питтингообразования, определяемыми более точно потенциостатическими или гальваностатическими методами  [c.283]


Смотреть страницы где упоминается термин Питтингообразование на нержавеющих сталях: [c.44]    [c.85]    [c.312]    [c.44]    [c.15]    [c.84]    [c.155]    [c.52]    [c.257]   
Смотреть главы в:

Анодная защита металлов от коррозии -> Питтингообразование на нержавеющих сталях




ПОИСК





Смотрите так же термины и статьи:

Сталь нержавеющая

нержавеющей



© 2025 chem21.info Реклама на сайте