Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Свойства некоторых радиоактивных индикаторов

    Приложение VI СВОЙСТВА НЕКОТОРЫХ РАДИОАКТИВНЫХ ИНДИКАТОРОВ [c.505]

    СВОЙСТВА НЕКОТОРЫХ РАДИОАКТИВНЫХ ИНДИКАТОРОВ [c.507]

    Согласно теориям Дола и Никольского, погрешности стеклянного электрода в ш елочных средах являются следствием того, что в этих растворах состав катионов в набухшей пленке стекла не остается постоянным, ионы водорода замеш аются на катионы из раствора. Эта замена происходит в некотором диапазоне pH. После достижения определенного значения pH все ионы водорода в стекле замещаются на ионы щелочного металла. Потенциал стеклянного электрода становится обратимым к ним и служит теперь катионным, например натриевым электродом. В настоящее время такой механизм установлен не только на основании изучения электрохимических свойств стеклянного электрода, но и на основании прямых исследований адсорбции ионов, проведенных с помощью радиоактивных индикаторов. [c.423]


    Известно, что круг вопросов по анализу в этой области весьма обширен — от выделения и анализа рзэ в облученных материалах, в осколочных продуктах с различным временем выдержки и в материалах, бомбардированных частицами высоких и сверхвысоких энергий, до анализа радиоактивных рзэ в органических материалах, водах, атмосфере и т. д. Соответствующие аналитические методики и рекомендации обслуживают не только производство ядерного горючего и, особенно, его реконверсию, но и ряд исследовательских направлений, например химию ядерных реакций, общую радиохимию, применение радиоактивных индикаторов в изучении биологических и медицинских проблем, развитие радиологической службы на местности и возникающие в связи с этим вопросы санитарии. Аналитический контроль необходим также для решения некоторых прикладных задач, как, например, для приготовления радиоактивных индикаторов достаточной радиохимической чистоты без носителя или с носителем, предназначенных для химической работы или для специальных целей. Специфика работы с радиоактивными веществами по отношению к разрабатываемым аналитическим способам проявляется в нескольких направлениях. Прежде всего работа с высокими уровнями активности требует защиты, что затрудняет проведение химических операций или даже заставляет пользоваться дистанционным и автоматическим управлением. При работе с короткоживущими радиоизотопами особые требования предъявляются к методической части, и, наконец, в радиохимической практике очень часто встречаются резкие несоответствия весовых количеств элементов и их активности, которые ответственны за появление новых свойств, например в растворах. Все это объясняет, почему в ряде случаев классические способы разделения ока- [c.256]

    При некоторых типах ядерных реакций (например, при облучении ядер элементов частицами высоких энергий и процессах деления тяжелых ядер) могут образоваться очень сложные смеси радиоактивны изотопов ряда элементов. Далее требуется их разделение и выделение в чистом виде как для изучения происходящих при этом процессов, так и для изучения свойств самих радиоактивных изотопов или использования их в качестве радиоактивных индикаторов. Приемы аналитической химии, используемые с учетом специфических условий (обычно приходится иметь дело с микроколичествами образующихся радиоактивных элементов), позволяют в ряде случаев проводить такие разделения с применением изотопных носителей или без них. Однако некоторые группы очень близких по свойствам элементов (редкоземельных, трансурановых и др.) обычными химическими методами разделяются весьма трудно. За последнее время эти задачи были успешно решены с помощью ионообменной хроматографии. Кроме того, оказалось, что часто ионообменными методами можно быстрее, проще и чище выделять и другие элементы, для которых обычно используются химические методы выделения. Поэтому в настоящее время разрабатываются хроматографические методы выделения многих элементов периодической системы. Преимущество этих методов состоит также в том, что в них отсутствуют явления соосаждений, захватов и т. д., причем чистые препараты можно получать в одном цикле. [c.384]


    Во второй части книги кроме таблиц даны приложения, в которых приведены выводы некоторых используемых в сборнике уравнений (уравнение для определения поправки на неполное разделение веществ и обмен во время разделения, уравнение самодиффузии, уравнения для расчета энергии отдачи атомов при ядерных реакциях), изложен принцип Франка-Кондона и приведены краткие сведения о естественных радиоактивных элементах и о свойствах некоторых наиболее общеупотребительных радиоактивных индикаторов. [c.3]

    В настоящее время известно более 3000 радиоактивных изотопов. Изотопы, пригодные для использования в качестве радиоактивных индикаторов, могут быть выбраны практически для всех элементов периодической системы. Допустим, исследователя интересует судьба определенного элемента в каком-либо химическом процессе. В изучаемую систему вводят некоторое количество радиоактивного изотопа того же элемента. Поскольку изотопы практически идентичны по своим химическим и физическим свойствам, то радиоактивную добавку постигнет та же судьба, что и основную массу нерадиоактивных атомов изучаемого элемента. Измеряя из лучение радиоактивной добавки, можно следить за ее поведением, а следовательно, и за поведением интересующего нас элемента. [c.14]

    Известны различные методы определения температуры стеклования-размягчения. Некоторые из них характеризуются как динамические (например, по величине динамического модуля или механических потерь, измеренных нри определенных частотах силового воздействия), другие же — как статические или квази-статические (наряду с термомеханическим анализом — методы объемной и линейной дилатометрии, измерения теплоемкости и некоторые другие методы, связанные с изменениями физических свойств полимера в ходе его нагревания). К последней группе примыкают и некоторые новые методы, в которых о размягчении судят по изменениям тех или иных индикаторов . Такими косвенными показателями состояния могут быть свечение (в методах термолюминесценции и радиотермолюминесценции), проницаемость по отношению к радиоактивному газу (эманационный метод), характеристики спектра ЭПР специально введенных в полимер свободных радикалов (метод парамагнитного зонда), газохроматографические характеристики и др. [c.98]

    ДО трехвалентного состояния и осаждение гидрата окиси кобальта до достижения условий, в которых наблюдается осаждение гидрата закиси кобальта. Другие опыты [218] показывают, что концентрация кобальта, требующаяся для инициирования катализа, обратно пропорциональна концентрации щелочи, причем критерием катализа является достижение произведения растворимости. При концентрациях щелочи ниже примерно 6 н. весь осажденный кобальт находится в трехвалентном состоянии, весь же кобальт в растворе—в двухвалентном. В более щелочной среде происходит некоторое растворение трехвалентного кобальта. Пирофосфат, карбонат, сульфид и арсенат в качестве ингибиторов этого катализа неэффективны, и ультрафиолетовый сиектр поглощения щелочных растворов, содержащих ион двухвалентного кобальта и гидрат окиси кобальта, не изменяется при добавке перекиси водорода. Исследования при помощи радиоактивных индикаторов [221] показали отсутствие обмена между иоиом закисного кобальта и гидратом окиси кобальта, безразлично в присутствии или в отсутствие перекиси водорода. Эти факты, очевидно, исключают возможность катализа по механизму окислительно-восстановитель-ного цикла. Однако, возможно, что катализ происходит по свободнорадикальному механизму. Этот механизм предложен, между прочим, для объяснения каталитического разложения озона [222] и гидроперекиси кумола [223] кобальтом. Далее, исследование [224] окисления воды до кислорода ионом окисного кобальта показало, что эта реакция в состоянии вызвать полимеризацию виниловых соединений постулировано, что при этом образуются гидроксильные радикалы путем переноса электрона от гидроксильного иона к окисному иону кобальта, причем последний, возможтю, находится в растворе в виде димерного комплекса с водой. Оказывают каталитическое действие на перекись водорода [225] и другие комплексы кобальта, например с аммиаком и цитратом. Кобальт на носителе [184, 226] также обладает каталитическими свойствами. Сообщается и о промотировании катализаторов разложения перекиси водорода кобальтом [168, 227]. г-  [c.409]

    Некоторые другие методы. В [104] исследовалось электрокинетическое поведение платины при различных потенциалах в разбавленных растворах по отклонению Pi/Pt-проволочки в электрическом поле. В [105, 106] предложен метод изучения поверхностных свойств металлов, основанный на измерениях силового барьера, препятствующего контакту поляризованных металлических нитей в растворе электролита. Эти два метода показывают, что на платине в достаточно разбавленных растворах существует диффузный ДЭС. В [107— 114] определялись потенциалы и токи при непрерывной зачистке платиновых электродов в растворах электролитов. Устанавливающиеся при зачистке потенциалы или потенциалы, при которых ток во время зачистки равен нулю, нельзя истолковывать как потенциалы нулевого заряда ДЭС. При условии, что во время зачистки не нарушается адсорбционное равновесие и сохраняется постоянным pH, эти потенциалы следует трактовать, как потенциалы нулевого полного заряда [115, 116]. Ионная адсорбция влияет на эстанс электрода, как это показано Гохштейном [117]. Однако на платиновых металлах эстанс в присутствии ионов разной природы пока детально не изучался. Предприняты попытки изучения состояния поверхности платины по смачиваемости [118—121], по зависимости фрикционных свойств электрода от потенциала [122], по удлинению платиновой нити [123], методом погружения электрода в раствор [124], методом временно-областной рефлектометрии [125]. Неоднократно проводились измерения емкости двойного электрического слоя на платине [126—138], причем очень часто этот метод применялся для области высоких анодных потенциалов (соответствующие ссылки можно найти в [133, 134]). Результаты определения потенциала нулевого заряда ДЭС [130—132] на платине по минимуму емкости в разбавленных сульфатных и перхлоратных растворах находятся в согласии с данными, полученными методом адсорбционных кривых и радиоактивных индикаторов. Причины существенно более анодных значений [c.61]


    При изучении превращения двуокиси углерода (пс=1, L—0) в углеводы ( с ==6, L — 1) естественно было искать промежуточные продукты среди соединений с углеродными цепями между по—1 и 6 и обладающих уровнями восстановленности между i = 0 и 1. На подобные поиски в прошлом было затрачено много труда. В настоящее время уместно поставить следующий вопрос. Можно ли вообще рассматривать промежуточые продукты фотосинтеза как молекулы с короткими цепями, ввиду того что механизм фотосинтеза, очевидно, не включает отделения субстрата восстановления от крупной молекулы носителя в течение всего процесса восстановления Па это можно ответить, что рассуждения такого рода, конечно, не следует считать столь важными, как это казалось прежде, одпако они и не совсем бесполезны. Некоторые из химических свойств, которыми будущая углеводная молекула обладает на различных стадиях своего роста, могут быть по существу одинаковыми, независимо от того, свободна ли она, или связана с носителем. Эксперименты с радиоактивными индикаторами (стр. 251) показывают, что отделение субстрата от носителя происходит до того, как закончится его превращение в сахар. Наконец, могут существовать равновесия между свободными и связанными промежуточными продуктами, сходные с равновесиями между свободной двуокисью углерода и комплексом Og . Например, если крупная молекула органической кислоты, гидрируясь, восстанавливается вначале до альдегида, а затем до спирта, то соответственно малые молекулы — двуокись углерода, муравьиная кислота и формальдегид — могут оказаться в свободном состоянии вследствие равновесий  [c.256]

    Цель настоящей статьи — поделиться опытом использования радиоактивных индикаторов при изучении свойств и разделении редкоземельных элементов. Обычно применяемые количественный спектральный и рептгеноспектральный методы анализа имеют некоторые особенности, которые следует отметить нужны дорогие установки и эталоны, требуется к тому же специальное помещение и специально обученный персонал необходимы заметные количества вещества в пробе, что вместе с затратой времени на определение затрудняет оперативный контроль за опытом. [c.284]

    Химия малых концентраций. VIII, Некоторые свойства радиоактивных индикаторов иттрия, сурьмы и серебра в растворах, [c.164]

    При любой модели требуется знание некоторых коэффициентов (кратность циркуляции, число ячеек, коэффициент продольного перемешивания и др.), зависящих от гидродинамических и конструктивных факторов и определяемых опытным путем. Указанные коэффициенты находят измерением полей скоростей и концентраций в аппарате или же пользуются косвенными методами, основанными на вводе в поток небольшого количества вещества (индикатора), не влияющего заметно на свойства потока и легко определяемого в нем. В качестве индикаторов применяют растворы красителей или солей, радиоактивные вещества и др. В первом случае концентрацию индикатора в потоке определяют фотоколориметрически или измерением электропроводности, во втором— по интенсивности излучения. В двухфазном потоке газ—жидкость коэффициенты находят для каждой из фаз. [c.239]

    Одним из важных ограничений метода меченых атомов является отсутствие у некоторых элементов, и в особенности у кислорода и азота, известных радиоактивных изотопов с подходящими значениями периода полураспада. Известны радиоактивные изотопы кислорода 0 , 0 и 0 , однако их периоды полураспада составляют только 72, 118 и 29 сек соответственно. ( 1/2 = 7 сек) и ( 1/2 = 4 сек) непригодны в качестве индикаторов, однако p -aктивныйN (il/2= 10 жмк) нашел применение в ряде исследований. Следует также о1 метить, что не существует изотопов гелия, лития и бора с периодами полураспада больше одной секунды. Хорошие результаты в таких случаях дает применение в качестве индикаторов изолированных стабильных изотопов. Для решения многих важных и интересных проблем были использованы обогащенные изотопы 0 и является весьма перспективным изотопом для опытов с меченым углеродом. Многие исследования были осуществлены с применением дейтерия (Н ) в качестве индикатора водорода. Использование трития (Н ) для этой цели не всегда возможно, поскольку свойства этого изотопа еще более отличны от свойств обычного водорода (Н ). [c.196]


Смотреть страницы где упоминается термин Свойства некоторых радиоактивных индикаторов: [c.830]    [c.542]    [c.475]    [c.475]    [c.37]   
Смотреть главы в:

Использование радиоактивности при химических исследованиях -> Свойства некоторых радиоактивных индикаторов




ПОИСК





Смотрите так же термины и статьи:

Индикатор радиоактивный

Радиоактивные индикаторы свойства



© 2024 chem21.info Реклама на сайте