Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Рубидий с углеродом

    Для многих металлов опытное значение Су близко к теоретической величине 24,942 Дж/моль-К. Например, для А1, Ре и Со Су=24,3 24,6 и 25,69 Дж/моль-К- Имеются исключения из этого правила. Для углерода, кремния, бериллия и бора опытные величины меньше теоретической, а для индия, натрия, рубидия и тория — выше опытной. [c.32]

    Металлорганические соединения. Химия металлорганических соединений изучает огромное число соединений, имеющих связи метал — углерод. Синтезированы различные соединения на основе лития, натрия, калия, рубидия, магния, ртути, алюминия, свинца, железа и других металлов. Многие из них ядовиты, самопроизвольно возгораются (взрываются) даже при комнатной температуре, поэтому требуются особые меры предосторожности при работе с такими веществами. Однако это не препятствует использованию их в технике. Выдающееся значение приобрело открытие особых каталитических свойств некоторых простых и комплексных металлорганических соединений, особенно На основе алюминийорганических соединений, которое позволило упростить и ускорить процессы промышленного производства ряда ценных полимерных материалов и синтетических каучуков. [c.269]


    Большинство металлоорганических связей полярно-кова-лентные. Только у щелочных металлов электроотрицательность достаточно низка, чтобы возможно было образование ионных связей с углеродом, но даже алкиллитиевые соединения по своим свойствам напоминают скорее ковалентные, а не ионные соединения. Простые алкильные и арильные производные натрия, калия, рубидия и цезия представляют собой нелетучие твердые вещества [93], нерастворимые в бензоле и других органических растворителях, в то же время алкильные производные лития — растворимые, хотя, как правило, тоже нелетучие твердые вещества. В таких растворителях, как эфир и углеводороды, алкиллитиевые соединения не существуют в виде мономерных частиц [94]. Наблюдения за понижением точки за- [c.234]

    Примером атомной решетки является кристалл алмаза в узлах его решетки помещаются атомы углерода кристаллы многих солей (например, галогенидов натрия, калия, рубидия, цезия) представляют собой ионные решетки молекулярные решетки образуют неметаллы, например сера, селен, иод, фосфор, а также многочисленные органические соединения. [c.273]

    Какие из двух элементов образуют соединения с преобладанием ионной или ковалентной связей а) рубидий с фтором б) водород с фтором в) водород с углеродом  [c.52]

    Атомной массой элемента называется средняя масса атома элемента относительно массы углерода-12. Если считать, что массы нейтрона п протона равны каждая приблизительно 1 и и что масса электрона относительно мала, то отклонение величин атомных масс от целых чисел для ряда элементов достаточно неожиданно. Иллюстрацией этого служат, например, атомные массы сурьмы (8Ь) — 121,75, бора (В) — 10,811, хлора (С1) — 35,45, рубидия (ВЬ) — 85,47. Дробные величины масс обусловлены тем, что большинство элементов существует в виде смеси атомов с различными массами, называемых изотопами. Число протонов (и электронов), присутствующих во всех атомах данного элемента, должно быть одинаковым. Изотопы имеют разное число нейтронов в ядре. Это означает, что изотопы, отличаются по своим массовым числам (числу протонов плюс число нейтронов), но не по своим атомным числам (числу протонов). Именно существование и распределение изотопов определяют точное значение атомной массы. Относительное количество данного изотопа называют природным содержанием этого изотопа (табл. 1-2). [c.12]


    Сравнительно много в атмосфере Солнца кислорода, углерода и азота. Обнаружены такие тяжелые элементы, как золото и торий. Рассчитано, что содержание технеция в атмосфере Солнца составляет около 10 % содержания водорода. Эта величина близка к распространенности многих соседних злементов — молибдена, рубидия. В атмосфере Солнца сравнительно много железа, которое по содержанию занимает одно из первых мест после водорода. [c.64]

    Отдельные тома серии Аналитическая химия элементов будут выходить самостоятельно, по мере их подготовки. Вышли в свет монографии, посвяш,енные торию, таллию, урану, рутению, молибдену, калию, бору, цирконию и гафнию, кобальту, плутонию, бериллию, прометию, технецию, астатину и францию, радию, ниобию и танталу, протактинию, кремнию, магнию, галлию, фтору, алюминию, селену и теллуру, никелю, РЗЭ и иттрию, нептунию, трансплутониевым элементам, платиновым металлам, золоту, германию, рению, фосфору, кадмию. Готовятся к печати монографии по аналитической химии кальция, лития, ртути, рубидия и цезия, серебра, серы, углерода, олова, цинка. [c.4]

    Гидроокиси рубидия и цезия — весьма активные в химическом отношении вещества. На воздухе они быстро расплываются и, поглощая двуокись углерода, постепенно переходят в карбонаты при 400—500° С взаимодействуют с кислородом, образуя перекиси [99], и с окисью углерода, образуя формиаты и оксалаты [6, 93]. Расплавленные гидроокиси рубидия и цезия разрушающе действуют на железо, кобальт, никель, платину, изделия из корунда и двуокиси циркония и постепенно растворяют даже серебро и золото. Наиболее устойчивыми в такой среде являются изделия из родия и сплавов родия с платиной. [c.89]

    Карбиды рубидия и цезия как бинарные соединения рубидия и цезия с углеродом можно разделить по их химическим свойствам и типу кристаллической решетки на две группы ацетилиды с о6> [c.110]

    Карбонаты рубидия и цезия в атмосфере двуокиси углерода плавятся без заметного разложения при 873 и 792 С соответственно [336—338], но при нагревании их выше температур плавления (особенно в вакууме) наблюдается диссоциация с отщеплением СО2. [c.131]

    Получение лития, рубидия и цезия в виде металлов связано с рядом особенностей, обусловленных прежде всего высокой химической активностью этих металлов. В частности, все металлургические процессы приходится осуществлять либо в вакууме, либо в среде аргона, так как присутствие в аппаратуре следов влаги, азота, кислорода и двуокиси углерода не только снижает выход металла и создает опасность самовозгорания, но и затрудняет получение продукта в чистом состоянии. Высокая коррозионная активность расплавленных щелочных металлов ограничивает выбор необходимых конструкционных материалов. Особенно сложной проблемой является разработка методов глубокой очистки металлических лития, рубидия и цезия. [c.379]

    Готовятся к печати монографии по аналитической химии лития, кальция, серебра, цинка, олова, серы, рубидия и цезия, углерода. [c.4]

    Металлический рубидий впервые выделил Р. Бунзен [3] восстановлением гидротартрата рубидия углеродом. Металлический цезий впервые удалось получить К. Сеттербергу [4] электролизом расплавленной смеси цианидов цезия и бария. [c.72]

    РУБИДИЙ (Rubidium от лат. rubi-dus — красны , темно-красный), Rb — хим. Элемент I группы периодической системы элементов, ат. н. 37, ат. м. 85,47. Серебристо-белый металл. В соединениях проявляет степень окисления -f- 1. Природный Р. состоит из стабильного изотопа Rb (72,15%) и радиоактивного изотопа 8ШЬ (27,85%) с периодом полураспада 5-101 Получено более 20 радиоактивных изотопов, из к-рых наибольшее применение находит изотоп 88Rb с периодом полураспада 18,66 дней. Р. от фыли (1861) нем. химик Р. В. Бунзен и нем. физик Г. Р. Кирхгоф при изучении спектра гексахлороплатинатов щелочных металлов, осажденных из маточника после разложения одного из образцов лепидолита. Металлический Р. впервые получил (1863) Р. В. Бунзен восстановлением гидротартрата рубидия углеродом. Р.— один из редких и весьма рассеянных элементов. Содержание его в земной коре [c.326]

    Родий. Ртуть. Рубидий Рутеиий Самарий Свинец. Селен. Сера. . Серебро Скандий Стронций Сурьма. Таллий. Тантал. Теллур. Тербий. Технеций Титан. Торий. Тулий. Углерод Уран. . Фермий Фосфор Франций Фтор.  [c.19]

    Следует заметить также, что степень опасности радионуклидов зависит не только от характеристики радиоактивного излучения, но и от их способности накапливаться в живых организмах. Быстрее всего из организма выводятся висмут, родий, бром, серебро, кобальт, №1трий, углерод (пфиод полувыведения от 1 до 10 суток). Для теллура, цезия, бария, меди, рубидия, серы, хлора, калия, скандия, магния и сурьмы эта величина составляет от 10 до 100 суток, а для железа, хрома, цинка, мьппьяка, урана, тория, редкоземельных элементов, бериллия, фтора, фосфора - ог 100 до 1000 суток. Период полувьшедения свинца, радия, нептуния, плутония, америция и кальция превьппает 1000 суток [184]. [c.101]

    При сжигании в кислороде литий также образует оксид, тогда как натрий переходит в пероксид МагОг, а калий, рубидий и цезий — в супероксиды КО2, НЬОг и СзОа- Все эти реакции сильно экзотермические. При тушении горящего натрия или калия нельзя применять снежные огнетушители (с жидкой двуокисью углерода), так как может произойти сильный взрыв их засыпают твердой поваренной солью или содой. [c.36]


    Аддукт состава СаК образуется экзотермически (8 ккал/моль) при контакте графита с избытком жидкого или парообразного калия. Он имеет вид бронзы и обладает гораздо более высокой электропроводностью, чем исходный графит. Внедрение атомов калия не искажает паркеты , но вызывает их смещение в точно одинаковые позиции (структура ААА...). Расстояние от одного из них до другого становится при этом равным 5,4 А, а каждый атом калия располагается между центрами двух шестиугольников, имея соседями двенадцать атомов углерода [ (КС) = 3,07А]. Схема координации в СаК показана на рис. Х-12. Аналогично калию ведут себя по отношению к графиту рубидий и цезий (расстояние между паркетами 5,6 для sRb и 5,95 А для a s), причем теплота внедрения по ряду К (87)—Rb (116) — s (159 кал/г графита) [c.504]

    Реакция с галогенами сопровождается взрывом. Со взрывом идет зеакция с серой, двуокисью углерода и четыреххлористым углеродом 10]. При нагревании взаимодействуют с углеродом (графитом), красным фосфором и кремнием [10]. Выше 300° разрушают стекло, восстанавливая кремний из SIO2 и силикатов [6]. Оказывают сильное корродирующее действие на многие металлы и материалы. Гидриды их МеН образуются при нагревании расплавов в атмосфере водорода. RbH и sH менее устойчивы, чем LiH, и во влажном воздухе окисляются, воспламеняясь [10]. С азотом рубидий и цезий непосредственно не реагируют их нитриды МезЫ, получаемые взаимодействием паров металлов с азотом в поле тихого электрического разряда [6], менее устойчивы, чем LI3N. [c.84]

    Соединения с кислородом. Рубидий и цезий в зависимости от условий их окисления образуют с кислородом окиси МеаО, перекиси МеаОг, триоксиды Ме4(Ог)з, надперекиси МеОг и озониды МеОз- При сгорании металлов на воздухе или в кислороде образуются МеОа, всегда содержащие примеси Ме4(Ог)з и МедОг. Все упомянутые кислородсодержащие соединения рубидия и цезия энергично взаимодействуют с парами воды и двуокисью углерода из воздуха, а надперекиси и озониды окисляют органические вещества с воспламенением или взрывом, вследствие чего требуют хранения в герметичной таре 26]. Изучены кислородные соединения рубидия и цезия недостаточно. [c.85]

    Термоионпий детектор (ТИД). ТИД используется как высок6специф1 ныЙ детектор для соединений, содержащих азот и фосфор (табл. 5.2-1). Его чувствительность к этим элементам примерно в ЮООО раз вьппе, чем к углероду. ТИД—пламенный детектор с безводородной газовой смесью. Между горелкой и собирающим электродом на платиновой проволоке закреплена стекля о ая чах тица, содержащая рубидий. Вокруг нее формируется плазма, в которой со- [c.252]

    Сульфид бария 138 бора 152 висмута 405 галлия 183 германия 244—5 железа 836 индия 190 иттрия 617 кадмия 593 калия 60 кальция 118 кобальта 854 кремния 234 лантана 624 лития 19 марганца 800 меди 561—2 молибдена 778 мышьяка 369—71 натрия 39 никеля 868 олова 254—5 ртути 602 рубидия 74 свинца 269 серебра 571 скандия 610 стронция 128 сурьмы 384—5 таллия 201 углерода 208 фосфора 354—5 хрома 768 цезия 86 цинка 586 Сульфид, гидроаммония 286 бария 139 натрия 40 Сульфид, ди- 837 Сульфид, поли-аммония 287 калия 61 натрия 41 цезия 87 Сульфит 416, 418, 420 Сульфит, гидро- 417, 419, 421 [c.478]

    Рубидий и цезий образуют (в зависимости от условий окисления металла) ряд соединений с кислородом окиси МегО, перекиси МегОг, триоксиды Ме4(Ог)з, надперекиси МеОг и озониды МеОз. При сгорании рубидия (или цезия) на воздухе или в кислороде образуется надперекись МеОг, содержащая всегда примеси Ме4(Ог)з и МегОг [83]. Все соединения рубидия и цезия, содержащие кислород, активно взаимодействуют с влагой и двуокисью углерода из воздуха, а перекиси, надперекиси и озониды легко окисляют органические вещества с воспламенением или взрывом и поэтому должны сохраняться в герметически закрытой таре [83]. [c.84]

    Для получения перекиси рубидия повышенной чистоты был предложен [96] оригинальный способ, заключающийся в обработке при 0°С надперекиси рубидия (КЬОг) четыреххлористым углеродом, содержащим двуокись хлора, до белой окраски реакционной смеси  [c.86]

    По окончании реакции КЬгОг отфильтровывают и промывают охлажденным четыреххлористым углеродом для удаления избытка двуокиси хлора. В ряде работ [83, 9-2, 93] сообщается о других способах получения перекисей рубидия и цезня. [c.86]

    Устойчивость озонидов щелочных металлов возрастает от литня к цезию. Если озонид лития в чистом виде неизвестен, а озонид рубидия мало устойчив при комнатной температуре, то озонид цезия не обнаруживает признаков разложения при 17— 19° С в течение нескольких дней. Лишь при нагревании до 70—100° С СзОз распадается с образованием окисн и выделением кислорода [102], Озониды рубидия и цезия крайне неустойчивы по отношению к влаге и двуокиси углерода. Они выделяют иод из кислых растворов иодидов. С водой бурно взаимодействуют по реакции  [c.88]

    Основные методы получения и очистки иодидов рубидия и цезия (нейтрализация карбонатов иодистоводородной кислотой, использование аннонгалогенаатов [184]) аналогичны методам получения и очистки соответствующих хлоридов и бромидов. Для синтеза иодидов рубидия и цезия могут быть также использованы хорошо известные реакции взаимодействия либо гидроокиси и галогена (в данном случае иода) при нагревании (см. раздел Бромиды рубидия и цезия ), либо карбоната (гидрокарбоната) с иодом в присутствии восстановителя (порошок карбонильного железа, перекись водорода и др.). В обоих случаях сухой остаток после выпаривания раствора прокаливают и выщелачивают водой. Рабочие растворы перед кристаллизацией иодидов можно очищать и экстракционным методом, особенно эффективным, когда требуется удалить примеси переходных элементов. В частности [185], для очистки иодидов от примесей железа, марганца, меди, кобальта и никеля (до 5-10 вес.% каждой примеси) водные растворы иодидов последовательно обрабатывают растворами дити-зона (при pH = 7,0—7,5) и о-оксихинолина (при pH = 5—6) в четыреххлористом углероде, а затем после удаления органического растворителя пропускают (для поглощения воднорастворимой части комплексообразователей и ССЦ) через хроматографическую колонку, наполненную послойно AI2O3 и канальной сажей. [c.104]

    Ниже рассматриваются соединения рубидия и цезия с неметаллами V и VI групп периодической системы — азотом, фосфором, мышьяком, углеродом, кремнием и германием. Германий выступает в данном случае как кислотообразующий элемент вслед-ствие того, что германиды рубидия и цезия проявляют явно солеобразный характер. Бориды рубидия и цезия неизвестны и вопрос о возможности их существования до настоящего времени не вполне выяснен. [c.107]

    Ацетилиды рубидия и цезия МегСз были получены в виде белых порошков с неясно выраженной кристаллической структурой при взаимодействии ацетилена и металла с последующим нагреванием в вакууме при 300° С образовавшегося однозамещенного ацетилида МеНСз. Присутствие примеси углерода часто придает продукту серый или черный цвет. Ацетилиды рубидия и цезия можно получать также путем обработки ацетиленом раствора металла в жидком аммиаке до исчезновения синей окраски раствора [218]. Ацетилид выделяется при удалении аммиака (температура около —30° С). [c.111]

    Основной метод получения карбонатов рубидия и цезия —прокаливание их тетраоксалатов [117], являющихся промежуточными продуктами переработки природного сырья (см. гл. IV). Возможен и ионообменный метод получения карбонатов рубидия и цезия [243, 348]. Для этого через колонку с катионитом КУ-2 в водородной или МН -форме сначала пропускают 5%-ный водный раствор хлорида щелочного металла, а затем после отмывки дистиллированной водой ионита от избыточных ионов хлора производят десорбцию цезия (или рубидия) 7%-ным раствором карбоната аммония, Фильтрат, содержащий обычно 100—150 г/л карбонатов рубидия или цезия и 40—50 г л карбоната аммония, упаривают досуха и прокаливают при 400—500° С, Чистота продукта в данном случае определяется качеством исходных хлоридов и используемых вспомогательных реагентов, В ионообменном методе можно кроме хлоридов применять в качестве исходных солей нитраты и сульфаты рубидия и цезия. Синтез карбонатов путем добавления избытка гидроокиси бария к сульфатам с последующим пропусканием в раствор двуокиси углерода для осаждения ВаСОз не позволяет полностью освободиться от примесей сульфатов [117]. [c.133]

    Гидрокарбонаты (бикарбонаты) рубидия и цезия МеНСОз выделяются в виде безводных призм или игл ромбической сингонии из 13—20 /о-ных водных растворов карбонатов при пропускании в них двуокиси углерода [93, 341]. При нагревании выше 170—180° С гидрокарбонаты разлагаются с выделением двуокиси углерода. Давление диссоциации НЬНСОз мм рт. ст.) в интервале температур 13—170° С удовлетворительно описывается уравнением [93]  [c.134]

    Тетрахлориодааты рубидия и цезия Ме[1(С1)4] образуют безводные оранжево-желтые кристаллы моноклинной сингонии, устойчивые на воздухе, в хлороформе и четыреххлористом углероде, но разлагающиеся в воде, этаноле, ацетоне, эфире, бензоле и н-геп-гане [470]. [c.161]

    Разложение кремнемолибдатов рубидия и цезия протекает при 400—450° С в токе нагретого хлористого водорода, пропускаемого через четыреххлористый углерод. Четыреххлористый углерод в результате термического разложения образует СгСЦ и СЬ. препятствующие восстановлению молибдена и тем самым возникновению менее летучих его соединений [258]  [c.299]

    Дипикриламинаты рубидия и цезия плохо растворимы в хлороформе, дихлорэтане, четыреххлористом углероде, бензоле и воде, но хорошо растворяются в ацетоне, этаноле, метиламилкетоие, этиловом эфире, этилацетате и нитробензоле. При обработке дипикриламинатов в органических растворителях 0,5 и. соляной кислотой происходит выделение дипикриламиновой кислоты с переходом образовавшихся хлоридов рубидия и цезия в водную фазу. [c.327]

    Практически эти реакции осуществляются следующим образом в водный раствор алюмо-рубидиевых квасцов добавляют щавелевую кислоту Н2Сг04-2Н20 и смесь нагревают до кипения. После полного растворения щавелевой кислоты раствор охлаждают, осадок тетраоксалата рубидия отфильтровывают, промывают сначала 5—6%-ным водным раствором щавелевой кислоты, а затем этанолом. Промытый и высушенный осадок прокаливают при 500—600°С в вакууме, чтобы предотвратить выделение свободного углерода [226, 263], [c.340]

    Первые систематические исследования процессов металлотермического восстановления редких щелочных металлов были проведены русским химиком И. Н. Бекетовым [18, 19], получившим металлические рубидий и цезий действием алюминия на RbOH и tsOH. В дальнейшем в качестве исходных веществ для получения лития, рубидия и цезия была опробована большая группа соединений (галогениды, гидроокиси, карбонаты, сульфаты, хроматы, цианиды, алюминаты, силикаты и бихроматы) и значительное количество восстановителей (магний, кальций, барий, натрий, алюминий, железо, цирконий, кремний, углерод, титан). [c.385]

    Неудачными оказались и попытки применить в качестве исходных соединений карбонаты и их смесь с гидротартратами, хотя и было опробовано несколько восстановителей (С, Fe, Ni, Mg, Si). Процесс при этом протекает при высокой температуре (1000— 1300°С), очень бурно, часто с воспламенением и взрывом. Выделяющаяся при реакции двуокись углерода превращает литий, рубидий и цезий в окиси, а углерод взаимодействует с литием с образованием карбида LI2 2. В результате выход металла с большим содержанием различных примесей составляет всего 18—507о [1, 3, И, 34—36]. [c.387]

    Отдельные тома серии Аналитическая химия элементов выходят самостоятельно по мере их подготовки. Вышли в свет монографии, посвяш енные торию, таллию, урану, рутению, молибдену, калию, бору, цирконию и гафнию, кобальту, бериллию, редкоземельным элелгептам и иттрию, никелю, технецию, прометию, астатину и францию, ниобию и танталу, протактинию, галлию, фтору, селену и теллуру, алюминию, нептунию, трансплутониевым элементам, платиновым металлам, радию, кремнию, германию, магнию, рению, марганцу, кадмию, ртути, золоту, кальцию, фосфору, литию, олову, серебру, цинку, рубидию и цезию, вольфраму, мышьяку, сере, азоту, плутонию, барию, стронцию и сурьме. Готовятся к печати монографии по аналитической химии ванадия, меди, углерода, брома, актиния и полония. [c.4]

    Отдельные тома серии Аналитическая химия элементов будут выходить самостояте.иьно, по мере их подготовки. Вышли в свет монографии, посвященные торию, таллию, урану, рутению, молибдену, калию, бору, цирконию и гафнию, кобальту, бериллию, никелю, редкоземельным элементам и иттрию, технецию, прометию, астатину и францию, ниобию и танталу, протактинию, галлию, фтору, селену и теллуру, алюминию, плутонию, нептунию, трансплутониевым элементам, кремнию, платиновым металлам, литию, германию, рению, магнию, кадмию, радию, золоту, фосфору, марганцу, ртути, кальцию, вольфраму, цинку, рубидию и цезию, олову, серебру, сере. Готовятся к печати монографии по аналитической химии бария, титана, азота, меди, углерода, иода, ванадия. [c.4]


Смотреть страницы где упоминается термин Рубидий с углеродом: [c.464]    [c.240]    [c.125]    [c.17]    [c.73]    [c.118]    [c.306]    [c.324]    [c.318]   
Химия и технология соединений лития, рубидия и цезия (1970) -- [ c.112 ]




ПОИСК





Смотрите так же термины и статьи:

Рубидий



© 2025 chem21.info Реклама на сайте