Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

МЕТАЛЛЫ — ОСНОВА ТЕХНИКИ Металлы и их соединения

    Электрохимия имеет очень больщое значение, так как закономерности электрохимии являются теоретической основой для разработки важных технических процессов — электролиза и электросинтеза, т. е. получения химических продуктов на электродах прн прохождении тока через растворы (получение хлора и щелочей, получение и очистка цветных и редких металлов, электросинтез органических соединений). Важной областью практического применения электролиза является гальванотехника (электропокрытие металлами и получение металлических матриц). Другая важная область техники, в основе которой лежат электрохимические процессы, — это создание химических источников тока (электрохимических или так называемых гальванических элементов, в том числе аккумуляторов), в которых [c.383]


    Реакции, протекающие с изменением степени окисления атомов, входящих в состав реагирующих молекул, называются окислительно-восстановительными. Окислительно-восстановительные реакции принадлежат к числу наиболее распространенных химических реакций. Дыхание, фотосинтез, обмен веществ и ряд биологических процессов в основе своей являются окислительно-восстановительными реакциями. В технике значение окислительновосстановительных реакций также велико. Так, вся металлургическая промышленность основана на окислительно-восстановительных процессах, в ходе которых металлы выделяются из природных соединений. [c.319]

    Медь — важный металл современной техники. Она являе"ся основным элементом таких сплавов, как латунь (с 2п), бронзы Зп, А1, Ве). В значительных количествах медь входит в состав мельхиора (на основе N1), нейзильбера (N1 и 2п), константана, манганина и некоторых других. Соединения меди (СигО, СиО) используются в качестве красок. Медь является хорошим инсектицидом. Одним из часто используемых соединений является медный купорос — СиЗО -бНгО. Серебро в основном находит применение в ювелирной промышленности, а его бромид и йодид — в фотографии. А ЫОз является исходным препаратом для получения других производных серебра. Главным потребителем золота является ювелирная промышленность. Почти 50% золота как валюта хранится в банках. [c.554]

    Реакция восстановления нитропроизводных до аминов была открыта в 1842 г. русским химиком Зининым, впервые превратившим нитробензол в анилин с помощью сульфида аммония. Открытие этой реакции положило основу развитию анилино-красочной промышленности. В общем виде процесс восстановления нитросоединений представляет систему реакций, в которых участвует нитросоединение как окислитель и другое соединение, играющее роль восстановителя. В качестве восстановителей используют самые разнообразные неорганические и органические вещества. Применение в технике нашли соединения, наиболее доступные по цене и удобные для практического использования металлы — железо, цинк, олово соли — хлорид олова, соли сернистой и сероводородной кислот. Широко применяется восстановление с помощью водорода в присутствии катализатора. В лабораторной, а в последние годы — ив заводской практике все большее значение приобретает восстановление смешанными гидридами металлов — алюмогидридом лития, боргидридом натрия. [c.94]


    Металлорганические соединения. Химия металлорганических соединений изучает огромное число соединений, имеющих связи метал — углерод. Синтезированы различные соединения на основе лития, натрия, калия, рубидия, магния, ртути, алюминия, свинца, железа и других металлов. Многие из них ядовиты, самопроизвольно возгораются (взрываются) даже при комнатной температуре, поэтому требуются особые меры предосторожности при работе с такими веществами. Однако это не препятствует использованию их в технике. Выдающееся значение приобрело открытие особых каталитических свойств некоторых простых и комплексных металлорганических соединений, особенно На основе алюминийорганических соединений, которое позволило упростить и ускорить процессы промышленного производства ряда ценных полимерных материалов и синтетических каучуков. [c.269]

    V, N5, Та — важные материалы современной техники Сплавы на основе этих металлов обладают высокими антикоррозионными свойствами, механической проч ностью, высокими температурами плавления Они широко используются в реактивной и космической технике, при создании атомных реакторов, являются перспективными материалами в химическом машиностроении Сверхпроводящие сплавы, катализаторы, радиоэлектроника, медицинская техника — дополнительные области применения элементов группы УВ Уникальной особенностью обладает чистый тантал, который не раздражает живую ткань и поэтому используется в костной хирургии Соединения ванадия ядовиты Один из растительных концентратов этого металла — ядовитый гриб бледная поганка В то же время известна роль ванадия как одного из катализаторов биохимических реакций Он от носится к микроэлементам, необходимым для всех живых организмов Внесение V в соответствующих дозах в почву приводит к лучшему усвоению растениями азота, увеличению содержания хлорофилла в листьях, лучшему накоплению биомассы в целом Биологическая роль ниобия и тантала не обнаружена [c.468]

    В настоящее время большое внимание уделяется созданию покрытий на основе силицидов, боридов, карбидов и нитридов, а также фосфидов -переходных металлов (металлоподобные соединения). Описание условий синтеза и свойств этих соединений стало предметом новых глав неорганической химии-. Материалы, создаваемые на основе металлоподобных соединений, приобрели большое значение в новой технике. Будучи весьма тугоплавкими, они занимают по своим свойствам промежуточное положение между металлами и окислами металлов. Особенный интерес для практики, помимо тугоплавкости, представляют их высокая твердость, износостойкость и выгодные термоэмиссионные характеристики. Кроме того, повышенные теплопроводность и электропроводимость нередко сочетаются в них с устойчивостью к кислотам, щелочам, расплавленным металлам и агрессивным газам. Некоторые из них обладают значительной и высокой окалиностойкостью. Эти качества они- могут придавать и покрытиям. [c.140]

    Появление различных видов синтетического каучука, синтетических волокон, жаростойких пластмасс на основе кремнийорганиче-ских соединений произвело настоящую революцию в различных областях техники. Детали, изготовленные,, из пластмасс, сочетают прочность и жаростойкость металлов с химической стойкостью неметаллических веществ. Кроме того, изделия из синтетических материалов легче, дешевле и долговечнее металлических. Так, например, вкладыши подшипников скольжения из капрона, фторопласта или древеснослоистых пластиков в 5—15 раз долговечнее бронзовых. Насосы из пластмассы в 10 раз долговечнее чугунных. В химической промышленности широко распространены трубы и арматура, изготовленные из стеклопластиков, полиэтилена, фторопласта. [c.3]

    ОЛОВА СПЛАВЫ — сплавы на основе олова. Для олова весьма характерно образование химических соединений с другими металлами. Наибольшее значение в технике имеют сплавы олова со свинцом, медью (бронзы), сурьмой, применяемые в качестве антифрикционных сплавов — баббитов, оловянно-свинцо-вых припоев, сплавов для литья художественных изделий, посуды, деталей приборов, фольги и др. [c.181]

    Задача курса хроматографического анализа — ознакомить студентов с физико-химическими основами и применением одного из наиболее эффективных и широко использующихся в различных областях науки и техники методов разделения близких по химическим свойствам веществ — соединений благородных металлов, редкоземельных элементов, синтетических и природных органических соединений и т. п. Хроматографическими методами анализируют промышленные продукты, растительные материалы, лекарственные препараты, контролируют химический состав окружающей среды (воздуха, природных вод, почв), а также решают многие другие аналитические задачи. Благодаря своей простоте и высокой эффективности хроматографические методы часто применяют взамен известных классических методов разделения (осаждения, ректификации и др.). [c.3]


    Бескислородные керамические материалы (карбиды, бориды, нитриды и т.д.) используют в различных областях техники и технологии, в том числе и в ядерной энергетике. Из карбидных материалов наиболее перспективными являются карбиды переходных металлов и неметаллов. Эти соединения обладают высокими температурами плавления и твердостью (в том числе и при высоких температурах), высокой термостойкостью и износостойкостью в сочетании со специфичными тепло- и электропроводностью, магнитными, ядерными и химическими свойствами, что позволяет использовать карбиды и материалы на их основе в энергетике, электротехнике, машиностроении. Наибольшее применение к настоящему времени нашла следующая группа карбидов В4С, Т1С, 7гС, ШС, УС, №С, №2С, ТаС, 81С, W , зС, ис, РиС. [c.327]

    В настоящее время электрохимические методы широко применяются в различных областях современной техники, составляя основу прикладной электрохимии. Главными отраслями прикладной электрохимии являются электрометаллургия, гальванотехника, электросинтез органических и неорганических соединений, производство химических источников тока, электрохимическая размерная обработка металлов, хемотроника, электрохимические методы контроля и анализа, методы защиты от коррозии. Так как различные отрасли прикладной электрохимии находятся в тесной связи с кинетикой электродных процессов, целесообразно кратко остановиться на их характеристике. [c.11]

    Широко известные жаропрочные и жаростойкие сплавы на основе железа, никеля и кобальта уже перестают в полной мере удовлетворять все возрастающим требованиям машиностроения, приборостроения, ядерной техники, радиоэлектроники и других отраслей промышленности. Материалы на основе тугоплавких металлов — титана, циркония, гафния, ванадия, ниобия, тантала, хрома, молибдена, вольфрама и рения и их высокотемпературных соединений — бо-ридов, карбидов, нитридов, силицидов и окислов в значительной степени могут отвечать запросам промышленности. Этим объясняется повышенный интерес к тугоплавким материалам. [c.4]

    Высокомолекулярные соединения лежат в основе так называемых пластических масс (пластмасс). Пластмассы в последнее время нашли большое применение как в быту, так и в технике. Пластмассы заменяют металл и дерево, применяются в машиностроении, авиастроении, электротехнике, химической промышленности, сельском хозяйстве, медицине, легкой промышленности и т. д. Пластические массы обычно представляют смеси ряда веществ смолы, пластификатора и наполнителя. К смолам принадлежат высокомолекулярные соединения как природные, так и синтетические особое значение имеют синтетические. К пластификаторам относятся вещества, придающие полимеру пластичность. В качестве пластификаторов обычно применяют сложные эфиры фосфорной и фталевой кислот. В качестве наполнителей часто используют ткани, бумагу, асбест, древесную муку и др. вещества. Для придания окраски пластикам применяют различные красители. [c.73]

    Применение магния и его соединений. Магний — ценный для техники металл и во многих отношениях соперничает с алюминием. Основная область применения магния — металлургия легких и сверхлегких сплавов. Сплавы на магниевой основе (80% Mg и более с небольшими добавками А1, Мп, 2п) имеют малую плотность, прочны, стойки на воздухе, сильно электропроводны. Присадка магния к другим сплавам улучшает их механические свойства. Используется магний и для получения таких тугоплавких и трудновосстанавливаемых металлов, как титан, ванадий, для раскисления и обессеривания сплавов, чугунов. Из магниевых сплавов с церием и лантаном изготовляют детали авиационных двигателей и каркасов, работающих при высокой температуре. Некоторые его соединения применяют в органическом синтезе и в других областях химической промышленности. [c.376]

    Клеи. Клеи на основе синтетических полимеров в настоящее время широко применяются в различных областях техники для соединения самых разнообразных материалов. Наряду со склеиванием неметаллических материалов (древесины, пластических масс, стек.ча, резины, стекловолокнистых теплоизоляционных материалов и т. д.) ими склеивают металлы между собой и с другими материалами. [c.39]

    Жаропрочность ряда металлов можно повысить, упрочнив металлическую основу введением в нее мелкодисперсных частиц тугоплавких соединений, главным образом различных окислов (материалы типа САП, т. е. спеченного алюминиевого порошка). Жаростойкость этих материалов, являюш,ихся перспективными для применения в различных областях техники, и механизм их окисления исследованы автором, Б. К. Опарой, Т. Г. Кравченко и О. А. Пашковой на кафедре коррозии металлов МИСиС. [c.109]

    Химия как основа научно-технического прогресса. Соединения, составы и материалы, создаваемые химией, играют важнейшую роль для повышения производительности труда, снижения энергетических затрат на производство необходимой продукции, освоения новых технологий и техники. Примеров успешного влияния химии на методы машиностроительной технологии, приемы эксплуатации машин и аппаратов, развитие электронной промышленности, космической техники и реактивной авиации и многих других направлений научно-технического прогресса множество. Например, внедрение химических и электрохимических методов обработки металлов резко снижает количество отходов. [c.16]

    Полимеры и пластмассы на их основе являются ценными заменителями многих природных материалов (металлов, дерева, кожи, клеев и т. п.). Синтетические волокна успешно заменяют натуральные — шелковые, шерстяные, хлопчатобумажные. При этом важно подчеркнуть, что по ряду свойств материалы на основе синтетических полимеров часто превосходят природные. Можно получать пластические массы, волокна и другие соединения с комплексом заданных технических свойств. Это позволяет решать многие задачи современной техники, которые не могли быть решены при использовании только природных материалов. [c.646]

    Соединения цинка и металлов его подгруппы тоже широко применяются в различных областях промышленности. Сульфид и оксид цинка, легированные некоторыми примесями, входят в группу веществ, обладающих способностью люминесцировать — испускать холодное свечение в результате действия на них лучистой энергии или электронов. Люминесценция имеет большое значение для науки и техники она лежит в основе люминесцентного анализа, работы телевизионных экранов, действия ламп дневного света. Люминесцирующие вещества называют люминофорами. [c.309]

    Развитие техники в век НТР идет как бы по цепной реакции быстро развивающиеся области науки и промышленности взаимно обогащают друг друга, еще невозможное вчера становится явью сегодня. Это относится и к космической технике, и к ядерной индустрии, к радиоэлектронике и многим другим областям науки и техники. Но в основе прогресса все же лежит химия и металлургия (тоже одна из областей химии), расширяющие наши возможности благодаря использованию редких элементов, особенно редких металлов и их соединений. [c.252]

    Кислород находит самое разнообразное применение при выплавке чугуна и стали (дутье), при обжиге сульфидных руд в производстве цветных металлов, в ацетиленовых горелках ( = 3000 °С). Жидкий кислород — окислитель топлива в ракетных двигателях. Кислород применяется в медицинской практике и различных химических производствах. Соединения кислорода — оксиды металлов — составляют основу современных неорганических материалов для электронной техники. [c.112]

    Наибольший интерес в области защиты металлов от коррозии полимерами представляют пластические массы на основе фтороргаиических соединений. Такие пластмассы, как политетрафторэтилен (фторопласт-4) и политрифторхлорэтилен (фторопласт-3), а также ряд сополимеров на основе политетрафторэтилена с другими фторорганнческими полимерами (фтористым винилиденом, гексафторнолипропиленом и др.) обладают рядом столь ценных свойств (исключительно высокая химическая стойкость, высокая теплостойкость и др.), что это делает их непревзойденными материала.мн в антикоррозионной технике. [c.428]

    Различные комплексные соединения и двойные соли имеют больпюе значение для ряда об,частей современной техники. Многие из ннх составляк5т основу некоторых металлсодержащих. минералов, Способность вещесгв к ко.мплексообразованию во многих случаях используется для выделения металлов из руд. Комплексные соединения часто при.меняются в процессах обработки мета т-лов, а также для получения некоторых металлов в особо чистом состоянии. [c.136]

    В книге изложены физико-химические свойства, области применения, препаративные и промышленные способы получения неорганических хлоридов. Рассмотрены теоретические основы хлорирования металлов, оксидов и природных соединений, специфические особенности синтеза отдельны хлоридов. Особое внимание уделено аппаратурно-технологическим вопросам промышленного производства хлоридов, усовершенствованию и созданию Н0ВЫ1Х прогрессивных процессов. Учитывая широкое применение хлоридов в полупроводниковой технике, рассмотрены методьг глубокой очистки хлоридов. [c.2]

    Полимеры и пластмассы на их основе являются ценными заме нителями многих природных материалов (металлов, дерева, кожи клеев и т. п.). Синтетические волокна успешно заменяют натураль иые — шелковые, шерстяные, хло 1чатобумажные. При этом важж подчеркнуть, что по ряду свойств материалы на основе синтетиче ских полимеров часто превосходят природные. Можно получат пластические массы, волокна и другие соединения с кoмплeк ov. заданных технических свойств. Это позволяет решать многие задачи современной техники, которые не могли быть решены при использовании только природных материалов. Народнохозяйственные планы нашей страны предусматривают широкое и все увеличивающееся развитие производства синтетических полимеров и разнообразных материалов на их основе .  [c.500]

    В принятых X.XVI съездом КПСС решениях указано, что На основе использования достижений науки и техники необходимо разрабатывать и внедрять высокоэффекгивные методы повышения прочностных свойств, коррозионной стойкости, тепло- и холодостойкости металлов и сплавов, металлических конструкций и труб увеличить производство новых конструкционных материалов, покрытий и изделий на основе металлических порошков, порошков сплавов и тугоплавких соединений  [c.212]

    Сернистые соединения вследствие их корродирующего действия на металлы, а также неприятного запаха и токсичности рассматривались лишь как вредные компоненты нефтепродуктов. Поэтому одной из главных задач очистки нефти и ее дистиллятов являлось возможно полное освобождение их от сернистых соединений. За последние 20 лет положение в этом отношении почти не изменилось. К сера-органическим соединениям по-прежнему относятся лишь как к компонентам нефти, ухудшающим технические свойства углеводородных фракций, и не рассматривают их как возможные источники химического сырья. При использовании этого сырья не только откроются новые пути более полной и целесообразной утилизации нефти, но и появятся неизвестные в настоящее время в технике и в природе направления синтеза сераорганических соединений, которые обладают комплексом ценных для практического применения свойств (физиологическая активность, активные компоненты в технических изделиях на основе высоконолимерных веществ, антикатализаторы, консервирующие вещества и т. д.). Было проверено действие концентратов сераорганических соединений из южноузбекистанских нефтей как инсектисидов [12]. Опрыскивание водной эмульсией та1шх концентратов хлопчатника, пораженного паутинным клещи-ком, дало положительный эффект. [c.335]

    Показано [165], что на основе этих соединений и комплексов могут быть созданы высокоэффективные экологически чистые ингибиторы коррозии (включая коррозионно-усталостное разрушение, фреттинг-коррозию) углеродистых сталей в водных средах с различными значениями pH и в биологически активных средах. Они хорошо зарекомендовали себя в различных областях техники как ингибиторы солеотложения. Кроме того, соединения и комплексы, содержащие переходные металлы и их соли, снижают пористость защитных лакокрасочных покрытий, повышают продолжительность их набухания, способствуют сохранению адгезии, а также позволяют улучшать антифрикционные, противоизносные и противопитгинговые свойства масел. [c.292]

    Электротехника, радиотехника и электроника. Редкоземельные металлы находят применение как газопоглотители (геттеры) в вакуумной технике и как эмиттеры. Их соединения весьма перспективны для изготовления катодов в электронных приборах. Используются также в счетно-решающих машинах, телевизионной и авиационной технике и радиотехнике. Особенно перспективны в этом отношении бориды и гексабориды РЗЭ [12]. Марганцевые соединения РЗЭ типа МпЬпОд — хорошие сегнетоэлектрики. Окись неодима применяется в электронных приборах в качестве диэлектрика с малым коэффициентом линейного расширения. Хороший диэлектрик СеОа в смеси с ТЮа- Смесь СеОа со 5гО используется в радиокерамических материалах. Широкое применение нашли соединения РЗЭ как активаторы или как основа для люминофоров в люминесцентных лампах и ртутных лампах высокого давления [19]. Составная часть люминофоров, применяющихся в лампах для освещения,— диспрозий [20]. [c.88]

    Многие лантаноиды и их соединения нашли применение в различных областях науки и техники. Они применяются в производстве стали, чугуна и сплавов цветных металлов. При этом используется главным образом мишметалл — сплав лантаноидов с преобладающим содержанием церия и лантана. Добавка малых количеств редкоземельных металлов повышает качество нержавеющих, быстрорежущих, жаропрочных сталей и чугуна. При введении 0,35% мишметал-ла в нихром, из которого делают электроспирали электропечей и др. нагревательных приборов, срок его службы при 1000 °С возрастает в 10 раз. Добавка лантаноидов к сплавам алюминия и магния и других металлов увеличивает их прочность при высоких температурах. Европий является единственной основой для получения красного люминофора для цветных кинескопов. [c.501]

    В современной технике широко применяются металлические композитные материалы, не проходящие в процессе изготовления через жидкую фазу (процесс плавления). В качестве конструкционных материалов теперь используются и неметаллы — синтетический графит (более прочный при высоких температурах, чем металл), керамика на базе корунда (А12О3) или кварца (ЗЮз) (также обладающая повышенной работоспособностью при высоких температурах), синтетические полимерные материалы на основе органических, элементорганических и неорганических соединений, а также стекла и ситаллы. [c.7]

    Чистый, свободный от гафния, цирконий используют для конструкций ядерных установок (стенки ядерных реакторов), так как он тормозит, но очень мало поглощает нейтроны и выдерживает действие высокой температуры. Гафний же сильно поглощает нейтроны, поэтому цирконий освобождают от примеси гафния, который обычно присутствует в цирконии в количестве 2%. Накопление гафния, выделенного из природных соединений циркония, заставило искать области его использования в технике. В настоящее время гафний рекомендован для изготовления антенн, прочных высокоэмиссионных электродов и в качестве добавки к электродным массам наряду с другими металлами. Он предложен как материал для геттеров на медной и никелевой основе и как добавка к вольфраму в целях задержки рекристаллизации последнего. [c.332]

    Сплавы Al-Mg-Be и Ве-А1, отличающиеся большой легкостью, применяются в самолетостроении и ракетной технике. Добавка бериллия к платине (0,06% Ве) сообщает ей твердость 20%-ного 1г-Р1-сплава. Известны коррозионностойкие сплавы на бериллиевой основе, содержащие до 2% Са, V, N1, 2г. В последнее время большое внимание уделяется интерметаллическим соединениям бериллия с тугоплавкими металлами, в первую очередь с танталом и цирконием (2гВе1з и ТагВе ,) их изготовляют в США в промышленных масштабах [47]. Тугоплавкость бериллидов, легкость и устойчивость к окислению до 1650° делают их идеальными конструкционными материалами для ракет, управляемых снарядов и спутников. Изучаются свойства и возможности использования бериллидов ЫЬ, Ш, Мо, а также редкоземельных элементов [17, 48]. [c.187]

    Перспективно применение НГ и его соединений в жаропрочных сплавах для самолетостроения и ракетной техники. Сплавы титана, легированные гафнием (до нескольких процентов), выдерживают нагревание до 980 . Сплавы тантала с гафнием устойчивы против окисления до 1650°. Сплавы МЬ и Та с НГ (2—10%) и У (8—10%) хорошо обрабатываются, коррозионно стойки, высокопрочны выше 2000° и вблизи абсолютного нуля. Уникальные свойства имеют жаропрочные материалы на основе карбида и нитрида гафния. Твердый раствор карбидов НГ и Та, плавящийся выше 4000°, — самый тугоплавкий керами ческий материал. Йз него готовят тигли для выплавки тугоплавких металлов и детали реактивных двигaтeлeiV 15, 16, 72, 731. [c.309]

    Использование металлов и их соединений. Бериллий, хотя и дорогой металл, находит применение для приготовления бериллиевых сплавов. Бронзы на основе меди, содержащие 2—4% бериллия, употребляют для поделки инструментов, контактирующих с легковоспламеняющимися веществами но взрывоопасных помещениях. Сплавы бериллия с алюминием применяются в авиации, ни-келево-бериллиевые сплавы идут на изготовление пружин высокого качества. Добавки бериллия сообщают сплавам твердость и прочность, коррозионную устойчивость, увеличивают теплопроводность и электрическую проводимость. Чистый бериллий хорошо пропускает рентгеново излучение, поэтому его применяют в изготовлении рентгеновых трубок для выпуска из них излучения через оконца, закрытые бериллиевыми пластинками. Сплавы магния, особенно с алюминием, имеют небольшую плотность и широко применяются в качестве конструкционных материалов в авиа-, автостроении, в ракетной технике и для других целей. Магний, кальций и барий используют как геттеры в технике высокого вакуума. [c.344]


Смотреть страницы где упоминается термин МЕТАЛЛЫ — ОСНОВА ТЕХНИКИ Металлы и их соединения: [c.250]    [c.382]    [c.424]    [c.467]    [c.230]    [c.301]    [c.146]    [c.534]   
Смотреть главы в:

Химия для любознательных -> МЕТАЛЛЫ — ОСНОВА ТЕХНИКИ Металлы и их соединения




ПОИСК





Смотрите так же термины и статьи:

Металлы соединения

Основа соединения



© 2025 chem21.info Реклама на сайте